Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T05:29:00.439Z Has data issue: false hasContentIssue false

Superficial and electrical characterization of thin films based on Chitosan/polypyrrole/MWCNT

Published online by Cambridge University Press:  22 July 2016

A. Olarte-Paredes
Affiliation:
Instituto Tecnológico de Zacatepec, Departamento de Metal-Mecánica/Departamento de Ingeniería Química y Bioquímica/División de estudios de Posgrado. Calzada Tecnológico No. 27, Col. Plan de Ayala, Zacatepec, Morelos, México C.P. 62780.
R. Salgado-Delgado
Affiliation:
Instituto Tecnológico de Zacatepec, Departamento de Metal-Mecánica/Departamento de Ingeniería Química y Bioquímica/División de estudios de Posgrado. Calzada Tecnológico No. 27, Col. Plan de Ayala, Zacatepec, Morelos, México C.P. 62780.
A. M. Salgado-Delgado
Affiliation:
Instituto Tecnológico de Zacatepec, Departamento de Metal-Mecánica/Departamento de Ingeniería Química y Bioquímica/División de estudios de Posgrado. Calzada Tecnológico No. 27, Col. Plan de Ayala, Zacatepec, Morelos, México C.P. 62780.
E. Rubio-Rosas
Affiliation:
CUVyTT -Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla, Puebla, México C.P. 72570.
E. García-Hernández
Affiliation:
Instituto Tecnológico de Zacatepec, Departamento de Metal-Mecánica/Departamento de Ingeniería Química y Bioquímica/División de estudios de Posgrado. Calzada Tecnológico No. 27, Col. Plan de Ayala, Zacatepec, Morelos, México C.P. 62780.
Z. Vargas-Galarza
Affiliation:
Instituto Tecnológico de Zacatepec, Departamento de Metal-Mecánica/Departamento de Ingeniería Química y Bioquímica/División de estudios de Posgrado. Calzada Tecnológico No. 27, Col. Plan de Ayala, Zacatepec, Morelos, México C.P. 62780.
Get access

Abstract

In recent decades conducting polymers have attracted attention due to their promising and versatile applications in different fields. There is a considerable interest in the application of nanotubes multilayer carbon (MWCNT) because of their unique structure, high electrical conductivity, high chemical stability, and high surface-to-volume ratio. These properties make MWCNT extremely attractive for fabricating sensors. Composites based on a matrix of a biopolymer such as the chitosan (CS) with a lot of conductive polymers or (MWCNT), have received increasing attention due to their attractive structural, mechanical and electrical properties that could have applications in different fields such as tissue engineering, biomedicine, and manufacture of sensors and biosensors. Have been reported conducting polymer composites with an extensive range of interesting mechanical and electrical properties, which is reported in this paper to obtain films by ultrasonic bath mixing of Chitosan 3% w/v using polypyrrole (PPy) and multilayer carbon nanotubes. Surface characterization was performed using scanning electron microscopy (SEM). The electrical properties were analyzed using electrochemical impedance spectroscopy (EIS) in a frequency range 0.01 - 10E+5 Hz to 10 mV AC. The results show that the films of CS/PPy/MWCNT have a homogeneous distribution where the chitosan envelops the loads, while for EIS retention load was observed within the matrix observing these materials in accordance with the equivalent circuit of Warburg showing diffusional process.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ke, G., Guan, W., Tang, C., Guan, W., Zeng, D., Deng, F., Biomacromolecules, 8 (2007).CrossRefGoogle Scholar
Venkatesan, J., Ryu, B., Sudha, P., Kim, S., International Journal of Biological Macromolecules, 50 (2012)CrossRefGoogle Scholar
Spinks, G., Shin, S., Wallace, G., Whitten, P., Kim, S., Kim, S., Sensors and Actuators B: Chemical, 115 (2006).CrossRefGoogle Scholar
de Sousa Luz, R., Martins, M., Magalhães, J., Siqueira, J., Zucolotto, V., Oliveira, O., Crespilho, F., da Silva, W., Materials Chemistry and Physics, 130 (2011).CrossRefGoogle Scholar
Kumar, B., Castro, M., Feller, J., Journal of Materials Chemistry, 22 (2012).Google Scholar
Yang, X. and Lu, Y., Polymer, 46 (2005).Google Scholar
Mahmud, H. N. M. E., Kassim, A., Zainal, Z., and Yunus, W.M.M., J. Appl. Polym. Sci. 100, 4107 (2005).CrossRefGoogle Scholar
Bardet, M., Guinaudeu, M., Bourgeoisat, C., and Cherin, H., Synth. Met.41, 359 (1991).Google Scholar
Wu, T., Pan, Y., Bao, H., Li, L., Mat. Chem. Phys. 129 (2011).Google Scholar
Migahed, M. D., Fahmy, T., Ishra, M., and Barakat, A.,Polym. Test.23, 361 (2004).Google Scholar
Lau, C., Cooney, M.J., Langmuir 24 (2008).CrossRefGoogle Scholar
Hu, Y., Chen, W., Lu, L., Liu, J., C., ACS Nano 4 (2010).Google Scholar
Sweetman, L.J., Moulton, S.E., Wallace, G.G., J. Mater. Chem. 18 (2008).CrossRefGoogle Scholar
Liu, Y.L., Chen, W.H., Chang, Y.H., Polym. 76 (2009).Google Scholar
Pérez, C., Prokhorov, E., Luna-Bárcenas, G., González-Campos, J.B., Sánchez, I.C., González-Hernández, J., Nanostruct, J.. Polym. Nanocompos. 6 (2010).Google Scholar