Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-27T20:48:41.287Z Has data issue: false hasContentIssue false

Superconductivity in Graphite Intercalation Compounds

Published online by Cambridge University Press:  15 February 2011

Yasuhiro Iye*
Affiliation:
The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
Get access

Abstract

Superconductivity in graphite intercalation compounds, C4nMHg (M:K, Rb, n=1,2) and C4KTl1.5 is studied in ambient as well as elevated pressures. It is argued that the major role in the superconductivity of this class of materials is played by electrons in the intercalant bands rather than those in the graphite bands. It is experimentally demonstrated that the two-dimensional anisotropy of the superconductivity is controlled by stage and pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hannay, N. B., Geballe, T. H., Matthias, B. T., Andres, K., Schmidt, P. and MacNair, D., Phys. Rev. Lett. 14, 255 (1965).Google Scholar
2. Koike, Y., Suematsu, H., Higuchi, K. and Tanuma, S., Solid State Commun. 27, 623 (1978);Google Scholar
2a J. Phys. Chem. Solids 41, 1111 (1980).Google Scholar
3. Kobayashi, M. and Tsujikawa, I., J. Phys. Soc. Jpn. 46, 1945 (1979);Google Scholar
3a Kobayashi, M. and Tsujikawa, I., J. Phys. Soc. Jpn. 46, 1945 50, 3245 (1981).Google Scholar
4. Alexander, M. G., Goshorn, D. P., Guérard, D., Lagrange, P., El Makrini, M. and Onn, D. G., Synthetic Metals 2, 203 (1980)Google Scholar
4a and Solid State Commun. 38, 103 (1981).Google Scholar
5. Koike, Y. and Tanuma, S., J. Phys. Soc. Jpn. 50, 1964 (1981).Google Scholar
6. Pendrys, L. A., Wachnik, R., Vogel, F. L., Lagrange, P., Furdin, G. F., El Makrini, M. and Hérold, A., Solid State Commun. 38, 677 (1981).Google Scholar
7. Iye, Y. and Tanuma, S., Phys. Rev. B25, 4583 (1982).Google Scholar
8. Wachnik, R., Pendrys, L.A., Vogel, F.L. and Lagrange, P., Solid State Commun. 43, 5 (1982).Google Scholar
9. Iye, Y. and Tanuma, S., to be published in Synthetic Metals.Google Scholar
10. Inoshita, T., Nakao, K. and Kamimura, H., J. Phys. Soc. Jpn. 43, 1237 (1977);Google Scholar
10a Inoshita, T., Nakao, K. and Kamimura, H., J. Phys. Soc. Jpn. 43, 1237 (1977); 45, 689 (1978);Google Scholar
10b and Ohno, T., Nakao, K. and Kamimura, H., J. Phys. Soc. Jpn. 47, 1125 (1979).Google Scholar
11. Holzwarth, N. A. W., Rabii, S. and Girifalco, L. A., Phys. Rev. B18, 5190 (1978).Google Scholar
12. Lagrange, P., El Makrini, M., Guérard, D. and Hérold, A., Synthetic Metals, 2, 191 (1980);Google Scholar
12a El Makrini, M., Lagrange, P., Guérard, D. and Hérold, A., Carbon 18, 211 (1980).Google Scholar
13. El Makrini, M., Lagrange, P. and Hérold, A., Carbon 18, 375 (1980).Google Scholar
14. Iye, Y. and Tanuma, S., Solid State Commun. 44, 1 (1982).Google Scholar
15. Morris, R. C., Coleman, R. V. and Bhandar, R., Phys. Rev. B5, 895 (1972).Google Scholar
16. McMillan, W. L., Phys. Rev. 167, 331 (1968).Google Scholar