Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:41:05.713Z Has data issue: false hasContentIssue false

Superconducting Properties of Substituted Oxides Bi2Sr2−xLaxCuO6+y and Bi2Sr2Ca1−xYxCu2O8+y Neutron Diffraction of Bi2Sr1.6La0.4CuO6+y and Bi2CaLaCuO6+y

Published online by Cambridge University Press:  21 February 2011

J. Darriet
Affiliation:
Laboratoire de Chimie du Solide du CNRS,351, Cours de la Libération,33405 Talence Cedex France.
J. A. Alonso
Affiliation:
Ceng, DRF SPh-MDN, B.P.85 X, 38041 Grenoble Cedex France.
P. Burlet
Affiliation:
Ceng, DRF SPh-MDN, B.P.85 X, 38041 Grenoble Cedex France.
B. Chevalier
Affiliation:
Laboratoire de Chimie du Solide du CNRS,351, Cours de la Libération,33405 Talence Cedex France.
B. Lepine
Affiliation:
Laboratoire de Chimie du Solide du CNRS,351, Cours de la Libération,33405 Talence Cedex France.
J. Rossat-Mignod
Affiliation:
Ceng, DRF SPh-MDN, B.P.85 X, 38041 Grenoble Cedex France.
C. J. P. Soethout
Affiliation:
Gorlaeus Laboratories, Leiden University, P.O.BOX 9502, 2300RA LEIDEN,The Netherlands.
J. L. Soubeyroux
Affiliation:
ILL, B.P. 156X, 38042 Grenoble Cedex France.
J. Etourneau
Affiliation:
Laboratoire de Chimie du Solide du CNRS,351, Cours de la Libération,33405 Talence Cedex France.
Get access

Abstract

The substituted oxides Bi2Sr2−xLaxCuO6+y and Bi2Sr2Ca1−xYxCu2O8+y isostructural to the n = 1 and n = 2 members of the high Tc superconductors have been prepared. The solid solution Bi2Sr2−xLaxCuO6+y shows a superconducting transition for 0.2–0.25<x<0.5 with an onset Tc near 30K and zero resistance temperatures which depend on x and the heat treatment. For x = 1 the isostructural phases Bi2ALaCuO6.5+y with A = Ca or Ba have also been synthesized and are not superconducting. A modelfor the localization of the oxygen atoms is proposed based on neutron diffraction of Bi2Sr1.6La0.4CuO6+y and Bi2CaLaCuO6+y.

The Bi2Sr2Ca1−xYxCu2O8+y solid solution exhibits a superconducting transition for 0<x <0.7. The critical temperature remains almost constant (85–90K) for 0<x <0.3 and then decreases rapidly. The oxygen content value 8.65 for Bi2Sr2YCu2O8+y agrees well with the increase of the positive charge when calcium is replaced by yttrium.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Michel, C., Hervieu, M., Borel, M.M., Grandin, A., Deslandes, F., Provot, J., Raveau, B., Z. Phys. B 68, 421 (1987).Google Scholar
2. Torrance, J.B., Tokura, Y., Placa, S.J. La, Huang, T.C., Savoy, R.J., Nazzal, A.I., Solid State Comm. 66, 703 (1988).Google Scholar
3. Sheng, Z.Z., Hermann, A.M., Nature 332, 55 (1988).Google Scholar
4. Hewat, A.W., Bordet, P., Capponi, J.J., Chaillout, C., Chenevas, J., Godinho, M., Hewat, E.A., Hodeau, J.L., Marezio, M., Physica C 156, 375 (1988).Google Scholar
5. Torardi, C.C., Subramanian, M.A., Calabrese, J.C., Gopalakrishnan, J., Mc Carron, E.M., Morrisey, K.J., Askew, T.R., Flippen, R.B., Chowdhry, U., Sleight, A.W., Phys. Rev. B 38, 225 (1988).Google Scholar
6. Zandbergen, H.W., Groen, W.A., Mijlhoff, F.C., Van Tendeloo, G., Amelinckx, S., Physica C 156, 325 (1988).Google Scholar
7. Tarascon, J.M., Page, Y. Le, Barboux, P., Bagley, B.G., Greene, L.H., Mc Kinnon, W.R., Hull, G.W., Giroux, M., Huang, D.M., Phys. Rev. B 37, 9382 (1988).Google Scholar
8. Sunshine, A., Seigrist, T., Scheemever, L.F., Murphy, D.W., Cava, R.J., Batlogg, B., Van Dover, R.B., Fleming, R.M., Glarum, S.H., Nakamara, S., Farrow, R., Krajewski, J.J., Zahurak, S.M., Waszczak, J.V., Marshall, J.M., Marsh, P., Rupp, L.W., Peck, W.F., Phys. Rev. B38, 893 (1988).Google Scholar
9. Bordet, P.P., Capponi, J.J., Chaillout, C., Chenavas, J., Hewat, A.W., Hewat, E.A., Hodeau, J.L., Marezio, M., Tholence, J.L., Tranqui, D., Physica C 156, 189 (1988).Google Scholar
10. Von Schnering, H.G., Walz, L., Schwarz, M., Becker, W., Hartweg, M., Popp, T., Hettich, B., Müller, P., Kämpf, G., Angew. Chem. 100 (4), 604 (1988).Google Scholar
11 Chevalier, B., Lepine, B., Lirzin, A. Le, Darriet, J., Etourneau, J., Tarascon, J.M., Materials Science and Engineering (to be published) (1988).Google Scholar
12. Manthiram, A., Goodenough, J.B., Appl.Phys. Lett. 53, 420 (1988).Google Scholar
13. Groen, W.A., Zandbergen, H.W., Solid State Comm. 68, 527 (1988).Google Scholar
14. Darriet, J., Soethout, C.J.P., Chevalier, B., Etourneau, J., Solid State Comm. 69, 1093 (1989).Google Scholar
15. Darriet, J., Lirzin, A. Le, Marquestaut, E., Lepine, B., Chevalier, B., Etourneau, J., Solid State Comm. 69, 739 (1989).Google Scholar