Published online by Cambridge University Press: 10 February 2011
The glass substrate plays a crucial role in the successful performance of advanced flat panel displays (FPDs). These FPD technologies include active-matrix liquid crystal displays (AMLCD) and Plasma Displays (PDP). Although these displays are different in the way in which they operate, there are several common substrate requirements, all of which are determined by the process for making the entire display. These include issues relating to substrate size, thermal shrinkage, high temperature stability, and substrate surface quality.
While AMLCD technology is moving toward larger sizes, PDPs are currently large size displays, requiring large glass substrates. The primary issue in using larger substrates is minimizing distortion of the glass during high temperature processes, both viscous sag and shrinkage. These are related to the high temperature thermal stability which, in turn, is largely determined by the strain point and thermal history of the substrate. Finally, thickness uniformity and surface flaws are critical to the performance of the final display.
Coming's Code 1737 glass substrate meets the requirements for AMLCDs and has become the industry standard. Corning/Saint-Gobain Code CS25 glass is a new glass that has significant benefits over soda-lime glass for PDP applications. This paper will discuss these two glasses in terms of the above-mentioned issues.