Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T21:31:02.740Z Has data issue: false hasContentIssue false

Substrate influence on the high-temperature annealing behavior of GaN: Si vs sapphire

Published online by Cambridge University Press:  01 February 2011

David Pastor
Affiliation:
[email protected], Institut Jaume Almera (C.S.I.C.), Spain
Ramon Cuscó
Affiliation:
[email protected], Institut Jaume Almera (C.S.I.C.), Spain
Luis Artús
Affiliation:
[email protected], Institut Jaume Almera (C.S.I.C.), Spain
Enrique Iborra
Affiliation:
[email protected], ETSIT, Univ.Politecnica Madrid, Tecnologia Electronica, Spain
Juan Jiménez
Affiliation:
[email protected], Univ. Valladolid, Fisica Materia Condensada, Spain
Francisca Peiró
Affiliation:
[email protected], Univ. Barcelona, Electronica, Spain
German González-Díaz
Affiliation:
[email protected], Univ. Complutense, Fisica Aplicada III, Spain
Enrique Calleja
Affiliation:
[email protected], ETSIT, Univ. Politecnica Madrid, ISOM and Ingenieria Electronica
Get access

Abstract

We have studied the effects of rapid thermal annealing at 1300°C on GaN epilayers grown on AlN buffered Si(111) and on sapphire substrates. After annealing, the epilayers grown on Si display a stained surface. Scanning electron microscopy and optical confocal images revealed the presence of crater-shaped inhomogeneities that develop around protruding nuclei with tipically 50 micron diameter. Energy dispersive x-ray microanalysis yields a high concentration of Si in the crater regions as well as non-stoichiometric concentrations of Ga and N, with an excess of N.

Micro-Raman spectra obtained within the crater region exhibit Raman peaks associated with Si3N4 but no trace of GaN modes, while focused ion beam milling of this region leads to the accumulation of metallic Ga in the etched area. These results suggest that a substantial migration of Si from the substrate takes place during the annealing, which severely alters the material in the crater regions. Such annealing effects, which are not observed in GaN grown on sapphire, constitute a severe drawback for a widespread use of Si(111) substrates when high-temperature processing is required.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Krost, A. and Dadgar, A., Mater. Sci. Eng. B 93 77 (2002).CrossRefGoogle Scholar
[2] Calleja, E., Sánchez-García, M. A., Basak, D., Sánchez, F. J., Calle, F., Yoinou, P., Muñoz, E., Serrano, J. J., Blanco, J. M., Villar, C., Laine, T., Oila, J., Saarinen, K., Hautojärvi, P., Molloy, C. H., Somerford, D. J., and Harrison, I., Phys. Rev. B 58, 1550 (1998).CrossRefGoogle Scholar
[3] Tran, C. A., Osinski, A., Karlicek, R. F. Jr., and Berishev, I., Appl. Phys. Lett. 75, 1494 (1999).CrossRefGoogle Scholar
[4] Dadgar, A., Christen, J., Riemann, T., Richter, S., Bläsing, J., Diez, A., Krost, A., Alam, A. and Heuken, M., Appl. Phys. Lett. 78, 2211 (2001).Google Scholar
[5] Guha, S. and Bojarczuk, N. A., Appl. Phys. Lett. 72, 415 (1998).CrossRefGoogle Scholar
[6] Stevens, K. S., Kinniburgh, M., Schwartzman, A. F., Ohtani, A., Beresford, R., Appl. Phys. Lett. 66, 3179 (1995).Google Scholar
[7] Semond, F., Lorenzini, P., Grandjean, N., and Massies, J., Appl. Phys. Lett. 78, 335 (2001).CrossRefGoogle Scholar
[8] Ishikawa, H., Yamamoto, K., Egawa, T., Soga, T., Jimbo, T., and Umeno, M., Crys, J.. Growth 189/190, 178 (1998).Google Scholar
[9] Kucheyev, S. O., Williams, J. S., and Pearton, S. J., Mater. Sci. Eng. R 33 51 (2001).CrossRefGoogle Scholar
[10] Gutiérrez-Sosa, A., Bangert, U., Harvey, A. J., Fall, C. J., Jones, R., Briddon, P. R., Heggie, M. I., Phys. Rev. B 66, 035302 (2002).CrossRefGoogle Scholar
[11] Wong, H., Microelectronics Reliability 42, 317 (2002).Google Scholar
[12] Kozawa, T., Kachi, T., Kano, H., Taga, Y., Hashimoto, M., Koide, N., and Manabe, K., J. Appl. Phys. 75, 1098 (1994).Google Scholar
[13] Ponce, F. A., Steeds, J. W., Dyer, C. D., and Pitt, G. D., Appl. Phys. Lett. 69, 2650 (1996).CrossRefGoogle Scholar
[14] Kuzuba, T., Kijima, K., Brando, Y., J. Chem. Phys. 69, 40 (1978).Google Scholar
[15] Limmer, W., Ritter, W., Sauer, R., Mensching, B., Liu, C., and Rauschenbach, B., Appl. Phys. Lett. 71, 2313 (1997).Google Scholar
[16] Pastor, D., Cuscó, R., Artús, L., González-Díaz, G., Fernández, S., and Calleja, E., Semicond. Sci. Technol. 20 374 (2005).CrossRefGoogle Scholar