Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:23:30.164Z Has data issue: false hasContentIssue false

Substrate and Particle Dependent Deep Level Generation in Silicon by MeV Particle Beams

Published online by Cambridge University Press:  25 February 2011

M.-A. Trauwaert
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
J. Vanhellemont
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
E. Simoen
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
C. Claeys
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
B. Johlander
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
R. Harboe-Sörensen
Affiliation:
ESTEC, European Space Agency, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands.
L. Adams
Affiliation:
ESTEC, European Space Agency, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands.
P. Clauws
Affiliation:
RUG, Krijgslaan 281 SI, B-9000 Gent, Belgium.
Get access

Abstract

The results are presented of a fundamental study of electrically active damage introduced in silicon diodes by irradiation with the fission products resulting from the decay of a 252Cf source and with high energy protons. The influence of the oxygen content of the silicon substrate and the irradiation type on the damage formation is investigated using deep level transient spectroscopy. A radiation hardening effect by interstitial oxygen is observed. Bom types of irradiation create the same dominant defect levels but with different relative densities. The identification of the induced deep levels are confirmed by isochronal annealing results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adams, L. and Holmes-Siedle, A., Nucl. Instr. Methods Phys. Res., A314, 335 (1992)Google Scholar
2. Stephen, J. H., Sanderson, T. K., Mapper, D., Farren, J., Harboe-Sorensen, R. and Adams, L., IEEE Trans. Nucl. Sci. NS–31(6), 1069 (1984).Google Scholar
3. Trauwaert, M.-A., Vanhellemont, J., Simoen, E., Claeys, C., Johlander, B., Adams, L. and Clauws, P., to be published in IEEE Transactions on Nuclear Science dec. 1992.Google Scholar
4. Claeys, C., Simoen, E., Trauwaert, M.-A. and Vanhellemont, J., IMEC Report P35271-IM-RP-0017 (1992).Google Scholar
5. Hallén, A., Sundqvist, B. U. R., Paska, Z., Svensson, B. G., Rosling, M. and Tirén, J., J. Appl. Phys. 67 (3), 1266 (1990).CrossRefGoogle Scholar
6. Browning, J. S., Report No. SAND86–0826 (1986).Google Scholar
7. Huppi, M. W., J. Appl. Phys 68 (6), 2702(1990).CrossRefGoogle Scholar
8. Kimerling, L. C., Asom, M. T., Benton, J.L., Drevinsky, P. J. and Caefer, C. E., Mat. Sc. Forum 38–41, 141 (1989).Google Scholar
9. Brotherton, S. D. and Bradley, P., J. Appl. Phys. 53 (8), 5720 (1982).Google Scholar
10. Irmscher, K., Klose, H. and Maass, K., J. Phys. C: Solid State Phys. 17 6317 (1984)Google Scholar
11. Ferenczi, G., Londos, C. A., Pavelka, T., Somogyi, M. and Mertens, A., J. Appl. Phys 63 (1), 183 (1988).Google Scholar
12. Wondrak, W., Bethge, K. and Silber, D., J. Appl. Phys 62(8), 3464 (1987).CrossRefGoogle Scholar
13. Yunusov, M. S., Makhkamov, Sh., Mirzaev, A. and Muratov, Z., Sov. Phys. Semicond. 15(4), 1366 (1981).Google Scholar
14. Evwaraye, A. O. and Sun, E., J. Appl. Phys, 47 (9), 3776 (1976)Google Scholar
15. Yuan, M. H., Peng, D. C., Peng, Q. Z., Zhang, Y. H., Li, J. Q. and Qin, G. G., J. Appl. Phys. 71(3), 1182 (1992)Google Scholar
16. Kimerling, L. C., DeAngelis, H. M. and Diebold, J. W., Solid-State Comm. 16, 171 (1975).Google Scholar
17. Barnes, C. E. and Samara, G. A., Appl Phys. Lett., 48(14), 934 (1986).Google Scholar