Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:00:42.592Z Has data issue: false hasContentIssue false

Substituted Indolo[3,2-b]Carbazoles: A New Class of Stable, High Mobility Organic Semiconductors for Thin Film Transistors

Published online by Cambridge University Press:  01 February 2011

Beng Ong
Affiliation:
Materials Design & Integration Laboratory Xerox Research Centre of Canada Mississauga, Ontario, Canada L5K 2L1 e-mail:[email protected]
Get access

Abstract

Properly functionalized indolo[3,2-b]carbazoles represent a new class of stable, high-mobility organic semiconductors for organic thin-film transistor applications. Both 5,11-disubstituted and peripherally substituted indolo[3,2-b]carbazoles with proper substituents self-organized into highly crystalline terrace-layered structures under suitable processing conditions. Organic TFTs using channel semiconductors of this nature exhibited excellent field-effect transistor properties, with mobility to 0.14 cm2 V-1 s-1 and current on/off ratio to 107. By virtue of their relatively low HOMO levels and large band gaps, this class of semiconductors also displayed excellent environmental stability under ambient conditions, an appealing characteristic for organic TFT applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1(a) Katz, H. E., Bao, Z., Gilat, S. L., Acc. Chem. Res. 34, 359 (2001).Google Scholar
(b) Dimitrakopoulos, C. D., Mascaro, D. J., Adv. Mater. 14, 99 (2002).Google Scholar
2(a) Gundlach, D. J., Lin, Y.Y., Jackson, T. N., Nelson, S. F., Schlom, D. G., IEEE Electron Device Lett. 18, 87 (1997).Google Scholar
(b) Kelly, T. W., Boardman, L. D., Dunbar, T. D., Muyres, D. V., Pellerite, M. J., Smith, T. P., J. Phys. Chem. B 107, 5877 (2003).Google Scholar
3(a) Garnier, F., Yassar, A., Hajlaoui, R., Horowitz, G., Deloffre, F., Servet, B., Ries, S., Alnot, P., J. Am. Chem. Soc. 115, 8716 (1993).Google Scholar
(b) Katz, H. E., Torsi, L., Dodabalapur, A., Chem. Mater. 7, 2235 (1995).Google Scholar
(c) Bao, Z., Dodabalapur, A., Lovinger, A. J., Appl. Phys. Lett. 69, 4108 (1996).Google Scholar
(d) Sirringhaus, H., Brown, P. J., Friend, R. H., Nielen, M. M., Bechgaard, K., Langeveld-Voss, B. M. W., Spiering, A. J. H., Janssen, R. A. J., Meijer, E. W., Herwig, P., Leeuw, D. M. de, Nature, 401, 685 (1999).Google Scholar
(e) Ong, B. S., Wu, Y., Liu, P., Gardner, S., J. Am. Chem. Soc. 126, 3378 (2004).Google Scholar
4(a) Herwig, P. T., Müllen, K., Adv. Mater. 11, 480 (1999).Google Scholar
(b) Afzali, A., Dimitrakopoulos, C. D., Breen, T. L., J. Am. Chem. Soc. 124, 8812 (2002).Google Scholar
5 Meng, H., Bao, Z., Lovinger, A. J., Wang, B., Mujsce, A. M., J. Am. Chem. Soc. 123, 9214 (2001).Google Scholar
6 Wu, Y., Li, Y., Gardner, S., Ong, B. S., J. Am. Chem. Soc. 127, 614 (2005).Google Scholar
7 Li, Y., Wu, Y., Gardner, S., Ong, B. S., Adv. Mater. 17, 849 (2005).Google Scholar