Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:08:42.575Z Has data issue: false hasContentIssue false

Subcritical CO2 Assisted Polymer Surface Engineering at Low Temperatures

Published online by Cambridge University Press:  01 February 2011

Yong Yang
Affiliation:
Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, U.S.A.
Ly James Lee
Affiliation:
Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, U.S.A.
Get access

Abstract

Polymer-based Micro/Nano Electro Mechanical Systems (MEMS/NEMS) have attracted a great deal of interest from industries and academia. The common polymer processing methods involve either organic solvents or temperatures above the glass transition temperature (Tg), which is undesirable, particularly for biomedical applications. On the basis of different properties near polymer surfaces from those in the bulk, we introduce subcritical fluids (particularly carbon dioxide, CO2) into polymer surfaces to manipulate the polymer properties at the nanoscale so that we can achieve low temperature surface engineering. In this study, polymer surface dynamics under CO2 were addressed using atomic force microscopy (AFM) and neutron reflectivity (NR). Monodispersed nanoparticles were deposited onto the smooth polymer surface and then embedded into the surface by annealing the sample at the pre-specified temperatures and CO2 pressures. The embedding of nanoparticles in the proximity of the surface was measured using AFM, and thus the surface Tg profile could be determined. It was revealed that there is a rubbery layer of up to a hundred nanometers thick at the surface where the Tg is lower than that in the bulk and CO2 dramatically reduced the surface Tg. NR studies also show that CO2 can enhance chain mobility at the polymer surfaces below the polymer bulk Tg. These results indicated that even low concentrated CO2 greatly could enhance polymer chain mobility below the Tg of the CO2–plasticized polymers. The thickness of the rubbery layer can be controlled by tuning either temperatures, or CO2 pressures, or both, which makes it possible to engineer polymer surfaces at low temperatures. Guided by the CO2 enhanced polymer surface dynamics, we developed a novel CO2 bonding technique to succeed in low temperature bonding of polymers at the micro/nanoscales. This CO2 bonding technique has been applied to seal polymeric nanofluidic biochips and construct well-defined three-dimensional (3D) biodegradable polymeric tissue scaffolds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. King, K. R., Wang, C., Vacanti, J. P., and Borenstein, J. T., Mater. Res. Soc. Symp. Proc. 729, 3 (2002).Google Scholar
2. Keddie, J. L., Jones, R. A. L., and Cory, R. A., Europhys. Lett. 27, 59 (1994).Google Scholar
3. Keddie, J. L. and Jones, R. A. L., Isr. J. Chem. 35, 21 (1995).Google Scholar
4. Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R., and Dutcher, J. R., Phys. Rev. Lett. 77, 4108 (1996).Google Scholar
5. Xie, F., Zhang, H. F., Lee, F. K., Du, B., Tsui, O. K. C., Yokoe, Y., Tanaka, K., Takahara, A., Kajiyama, T., and He, T., Macromolecules 35, 1491 (2002).Google Scholar
6. Ngai, K. L., Rizos, A. K., and Plazek, D. J., J. Non-Cryst. Solids 235–237, 435 (1998).Google Scholar
7. Mayes, A. M., Macromolecules 27, 3114 (1994).Google Scholar
8. Hsu, D. T., Kim, H.-K., Shi, F. G., Zhao, B., Brongo, M. R., Schilling, P., and Wang, S.-Q., Proc. SPIE-Int. Soc. Opt. Eng. 3883, 60 (1999).Google Scholar
9. Boiko, Y. M. and Prud'homme, R. E., Macromolecules 30, 3708 (1997); 31, 6620 (1998).Google Scholar
10. Zhang, X., Tasaka, S., and Inagaki, N., J. Polym. Sci., Part B: Polym. Phys. 38, 654 (2000).Google Scholar
11. Yang, Y., Zeng, C., and Lee, L. J., Adv. Mater. 16, 560 (2004).Google Scholar
12. DeMaggio, G. B., Frieze, W. E., Gidley, D. W., Zhu, M., Hristov, H. A., and Yee, A. F., Phys. Rev. Lett. 78, 1524 (1997).Google Scholar
13. Fryer, D. S., Nealey, P. F., and De Pablo, J. J., Macromolecules 33, 6439 (2000).Google Scholar
14. Rudoy, V. M., Dement'eva, O. V., Yaminskii, I. V., Sukhov, V. M., Kartseva, M. E., and Ogarev, V. A., Colloid Journal (Translation of Kolloidnyi Zhurnal) 64, 746 (2002).Google Scholar
15. Teichroeb, J. H. and Forrest, J. A., Phys. Rev. Lett. 91, 016104/1 (2003).Google Scholar
16. Kawaguchi, D., Tanaka, K., Kajiyama, T., Takahara, A., and Tasaki, S., Macromolecules 36, 1235 (2003).Google Scholar
17. Yang, Y., Basu, S., Lee, L. J., Yang, S.-T., and Tomasko, D. L., Biomaterials (online available on Sep. 15, 2004).Google Scholar
18. Sproule, T. L., Lee, J. A., Li, H., Lannutti, J. J., and Tomasko, D. L., J. Supercritical Fluids 28, 241 (2004).Google Scholar
19. Dillow, A. K., Dehghani, F., Hrkach, J. S., Foster, N. R., and Langer, R., Proc. Natl. Acad. Sci. U. S. A. 96, 10344 (1999).Google Scholar