Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:15:02.896Z Has data issue: false hasContentIssue false

A Study on the Growth of a Ferroelectric Thin Film Using Ionized Cluster Beam Epitaxy Technique and the Application for Ulsi Fabrication

Published online by Cambridge University Press:  10 February 2011

Hyun Seok Lee
Affiliation:
Dept. of Electrical Eng., KOREA University 1, Anam-dong, Sungbuk-ku, Seoul, 136-701, Korea, [email protected]
Man Young Sung
Affiliation:
Dept. of Electrical Eng., KOREA University 1, Anam-dong, Sungbuk-ku, Seoul, 136-701, Korea, [email protected]
Get access

Abstract

The dielectric properties of Ba0.65Sr0.35TiO3(BST) films deposited by an electron beam assisted ionized cluster beam epitaxy (ICBE) technique were investigated. Highly (110) oriented BST films having a thickness up to 1, um have been successfully grown on a Si (100) substrate at 400°C using the electron beam assisted ICBE system with a plasma O2 source. It was found that the dielectric constant increases from 475 to 1191 with different process conditions. A BST film with a thickness of 500Å deposited at a substrate temperature of 400°C has a dielectric constant of 1191 and a leakage current of about 2.37×10-9 A/cm2. This shows the BST film can be applied to dielectrics of ULSI capacitors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krupanidhi, S.B., J. Vac. Sci. Technol. A 10 (4), 1569 (1992)Google Scholar
2. Li, Yi, Kawa, P.M., and Youdelis, W.V., J. Mat. Sci. 28, 4104 (1993)Google Scholar
3. Buskirk, Peter C.Van, Gardiner, Robin, and Kirlin, Peter S., J. Vac. Sci. Technol. A 10 (4), 1578 (1992)Google Scholar
4. Francombe, M. H. and Krishnaswamy, S. V., J. Vac. Sci. Technol. A 8, 1382 (1990)Google Scholar
5. Scott, J. F. and Araujo, C. A., Science 246, 1400 (1989)Google Scholar
6. Sanchez, L. E., Wu, S. Y., and Naik, I. K., Appl. Phys. Lett. 56, 2399 (1990)Google Scholar
7. Horikawa, Tsuyoshi et al., Jpn. J. Appl. Phys. 32, 4126 (1993)Google Scholar
8. Smlenskii, G. Ak and Rozgachev, K. I., Zh. Tekh. Fiz. 24, 1751 (1994)Google Scholar
9. Kim, K., Sung, M. Y., Hsieh, K. C., Cowell, E. W., Feng, M. S., and Cheng, K. Y., J.Vac. Sci. Technol. A 7, 792 (1989)Google Scholar
10. Li, Yi et al., J. Am. Ceram. Soc. 76 (12), 2985 (1993)Google Scholar
11. Yamauchi, H., White, R. J., Ayukawa, M., Murry, T. C., and Robinson, W., J. Mater. Res. 3, 105 (1988)Google Scholar
12. Li, Y., Chao, B. S., and Yamauchi, H., J. Appl. Phys., 71 (10) 4903 (1992)Google Scholar
13. Yamamichi, S., Sakuma, T., Takamura, K., and Miyasaka, Y., Jpn. J. Appl. Phys. 30, 2193 (1991)Google Scholar
14. Arlt, G., Henninfs, D., and de With, G., J. Appl. Phys. 58, 1619 (1985)Google Scholar
15. Ishikawa, K., Phys. Rev. B 37, 5852 (1988)Google Scholar
16. Kumar, A., and Whitesides, G. M., Appl. Phys. Lett. 63, 2002 (1993)Google Scholar