Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:32:01.172Z Has data issue: false hasContentIssue false

Study on the Dopedβ-FeSi 2 Obtained by Metal Vapor Vacuum Arc Ion Source Implantation and Post-Annealing

Published online by Cambridge University Press:  01 February 2011

Shuangbao Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, PRC.
Hong Liang
Affiliation:
Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100080, PRC.
Peiran Zhu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, PRC.
Get access

Abstract

β-FeSi2 was firstly formed by implanting Si wafers with Fe ions at 50 kV to a dose of 5×1017/cm2in a strong current Metal Vapor Vacuum Arc (MEVVA) implanter. Secondly, Ti implantation was performed on these Fe as-implanted samples. The Fe + Ti implanted samples were furnace annealed in vacuum at temperatures ranging from 650 to 975°C. The XRD patterns of the annealed samples correspond to β-FeSi2 structure (namely β-Fe(Ti)Si2). When annealing was done above 1050°C, the β-Fe(Ti)Si2 transformed into α-Fe(Ti)Si2. This implies that introducing Ti stabilizes the β-FeSi2 phase. Resistance measurements were also performed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gerthsen, D., Radermacher, K., Dieker, Ch., Mantl, S., J.Appl. Phys. 71, 3788 (1992).Google Scholar
2. Shinoda, D., Asanabe, S., and Sasaki, Y., J. Phys. Soc. Jpn. 19, 269 (1964).Google Scholar
3. White, A. E., Short, K. T., and Eaglesham, D. J., Appl. Phys. Lett. 56, 1260 (1990).Google Scholar
4. Ley, L., Wang, Y., Van, V. Nguyen, Fisson, S., Souche, D., Vuye, G., and Rivory, J., Thin Solid Films 270, 561 (1995).Google Scholar
5. Sullivan, J. P., Tung, R. T., and Schrey, F., J. Appl. Phys. 72, 478 (1992).Google Scholar
6. Zhu, D.H., Lu, H. B., Pan, F., Tao, K., and Liu, B. Xi., J. Phys. 5, 5505 (1993).Google Scholar
7. Desimoni, J., Sanchez, F.H., Raap, M.B.F. Van, Lin, X. W., Bernas, H., andC. Clerc, Phys. Rev. B54, 12787 (1996).Google Scholar
8. Oostra, D. J., Vandenhoudt, D. E. W., Bulle-Lieuwma, C.W.T., Naburgh, E.P., Appl. Phys. Lett. 59, 1737 (1991).Google Scholar
9. Brown, I.G., Gavin, J.E., and MacGill, R.A., Appl. Phys. Lett. 47, 358 (1985).Google Scholar
10. Sullivan, J. P., Tung, R. T., and Schrey, F., J. Appl. Phys. 72, 478 (1992).Google Scholar
11. Zhang, Y.W., Whitlow, Harry J., and Zhang, T.H., Opt-electronic Eng. 37/38, 499 (1997).Google Scholar
12. Ishiwara, H., Saitoh, S., and Hikosaka, K., Jpn. J. Appl. Phys. 20, 843 (1981).Google Scholar
13. Bost, M. C. and John Mahan, E., J. Appl. Phys. 63, 839 (1988).Google Scholar
14. Engstrom, Ingvar and Lonnberg, Bertil, J. Appl. Phys. 63, 4476 (1988).Google Scholar
15. Radermacher, K., Mantl, S., Dieker, Ch., and Luth, H., Appl. Phys. Lett. 59, 2145 (1991).Google Scholar
16. Komabayashi, M., Hijikata, K. and Ido, Shunji, Jpn. J.Appl. Phys. 30, 331 (1991).Google Scholar
17. Liu, B.X., Zhu, D.H., Lu, H.B., Pan, F., and Tao, K., J.Appl. Phys. 75, 38473854 (1994).Google Scholar
18. Lange, H., Phys. Stat. Sol. (b) 201, 3 (1997).Google Scholar
19. Takakura, K.I., Suemasu, T., Ikura, Y., and Hasegawa, F., Jpn. J. Appl. Phys. 39, L789 (2000).Google Scholar
20. Wang, S.B., Liang, H., Thin Solid Films (to be published).Google Scholar