Published online by Cambridge University Press: 11 February 2011
The chemical forms of carbon leaching from carbon-containing Zr and Fe-based metallic materials have been investigated to improve the estimation of the contribution of C-14 in the performance assessment of TRU waste disposal. Both organic and inorganic carbons were identified in the leached solution with carbon containing zirconium and steel, and the concentrations of total carbon (organic plus inorganic) in the leached solutions increased with time. The carbon concentrations in the leached solution for both metallic samples were higher at higher pH. With High Performance Liquid Chromatography (HPLC), organic carbons were identified to be low-molecular weight alcohols, carboxylic acids and aldehydes.
To explore the chemical state of carbon in the matrix materials, the leaching experiments were carried out also for ZrC, Fe3C, the powder mixtures of carbon and zirconium, and of carbon and iron. The low-molecular weight organic carbons were detected only in the case of carbides (ZrC and Fe3C). The chemical forms of carbon in the zirconium alloy were suggested to be carbide or carbon by H.D. Smith[1]. The present result suggests that the chemical forms of carbon in zirconium or iron are mainly in the form of carbide.
In the interest of performance assessment, the distribution coefficients of the organic carbon species identified in the leached solution for cement were obtained. As expected, some of them were shown to be larger than the values assumed in the performance assessment of Progress Report on Disposal Concept for TRU Waste in Japan[2].