Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:49:39.890Z Has data issue: false hasContentIssue false

A Study on Conditions for Microbial Transport through Compacted Buffer Material

Published online by Cambridge University Press:  21 March 2011

Fukunaga
Affiliation:
IHI (Ishikawajima-Harima Heavy Industries Co., Ltd.), Shin-nakahara-cho 1, Isogo-ku, Yokohama 235-8501, Japan
M. Honya
Affiliation:
IHI (Ishikawajima-Harima Heavy Industries Co., Ltd.), Shin-nakahara-cho 1, Isogo-ku, Yokohama 235-8501, Japan
E. Yokoyama
Affiliation:
IHI (Ishikawajima-Harima Heavy Industries Co., Ltd.), Shin-nakahara-cho 1, Isogo-ku, Yokohama 235-8501, Japan
K. Arai
Affiliation:
IHI (Ishikawajima-Harima Heavy Industries Co., Ltd.), Shin-nakahara-cho 1, Isogo-ku, Yokohama 235-8501, Japan
T. Mine
Affiliation:
JNC (Japan Nuclear Cycle Development Institute), Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194, Japan
M. Mihara
Affiliation:
JNC (Japan Nuclear Cycle Development Institute), Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194, Japan
T. Senju
Affiliation:
IIC (Ishikawajima Inspection and Instrumentation Co., Ltd.), Shin-nakahara-cho 1, Isogo-ku, Yokohama 235-8501, Japan
Get access

Abstract

In order to assess microbial transport through compacted buffer material consisting of bentonite and silica sand with a density of 1.2, 1.6 or 1.8 g/cm3, sterilized test pieces with the diameter of 50 mm and the depth of 25 mm were fed with bacteria, Escherichia coli. The bacteria freely diffused when the proportion of Na-bentonite was 20 wt% or that of Ca-bentonite was 50 wt%. Bacterial movement was less than 5 mm in three weeks when the proportion of Na-bentonite was 70-100 wt% or that of Ca-bentonite was 100 wt%. A high proportion of bentonite is essential to slow down microbial entrance to the surface of a nuclear-waste container.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. West, J.M. & McKinley, I.G., Mat. Res. Soc. Symp. Proc., Vol.26, p.487494 (1984)Google Scholar
2. Agg, P.J., Nucl. Energy, Vol.32, p.8187 (1993)Google Scholar
3. Motamedi, M., Karland, O., and Pedersen, K., FEMS Microbiology Letters, Vol.141, p.8387 (1996)Google Scholar
4. Stroes-Gascoyne, S., Lucht, L.M., Oscarson, D.W., Dixon, D.A., Hume, H.B., and Miller, S.H., Proc. 11th Int. Clay Conf., Ottawa, Canada, p.117122 (1999)Google Scholar
5. Fukunaga, S., Fujiki, K., and Asano, H., International Symposium on Subsurface Microbiology (ISSM.93), Bath, U.K. Abstr. C-04 (1993)Google Scholar
6.JNC (Japan Nuclear Cycle Development Institute), TN1400 99-022 (1999)Google Scholar
7. Mihara, M., Ito, M., Kato, H., and Ueta, S., in JNC TN8430 99-011 (1999) (in Japanese)Google Scholar
8. Ban, K., Clean Technology, July, p.1619 (1993) (in Japanese)Google Scholar
9. Couture, R.A., Nature, Vol.318, Nov. p.5052 (1985)Google Scholar
10. Ogata, N., Kozaki, A., Ueda, H., Asano, H. and Takao, H., Journal of Nuclear Fuel Cycle and Environment, Vol.5, No.2, p.103121 (1999) (in Japanese)Google Scholar
11. Stroes-Gascoyne, S., Haveman, S.A. and Vilks, P., Mat.Res.Soc.Symp.Proc., Vol.465, p.987994 (1997)Google Scholar
12. Stroes-Gascoyne, S. and West, J.M., FEMS Microbiology Reviews, Vol.20, p.573590 (1997)Google Scholar