Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:48:08.291Z Has data issue: false hasContentIssue false

Study of Vacancy and Impurity Complexes in Si Solid-Phase Epitaxial Crystallization with Positron Annihilation Spectroscopy

Published online by Cambridge University Press:  17 March 2011

Claudine M. Chen
Affiliation:
Dept of Physics, Washington State University, Pullman, WA 99164
Stefano Rassiga
Affiliation:
Dept of Physics, Washington State University, Pullman, WA 99164
Marc H. Weber
Affiliation:
Dept of Physics, Washington State University, Pullman, WA 99164
Mihail P. Petkov
Affiliation:
Dept of Physics, Washington State University, Pullman, WA 99164
Kelvin G. Lynn
Affiliation:
Dept of Physics, Washington State University, Pullman, WA 99164
Harry A. Atwater
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

We investigate the residual vacancy defect species after crystallization of amorphous Si (a-Si) by solid phase epitaxy (SPE). To this end, we correlate the total and electronically-active doping concentrations measured by secondary mass spectrometry and spreading resistance analysis, and data from positron annihilation spectroscopy (PAS), which is sensitive to openvolume defects. Float-zone silicon substrates were implanted with boron, phosphorus and both phosphorus and boron ions to create nonuniform doping profiles at degenerate doping levels, after an amorphization step by 29Si+ ions. Samples were vacuum annealed at 600°C to induce SPE, and the SPE rate was measured by time-resolved reflectivity. PAS was used for identification of the impurity-defect complexes. Momentum-resolved PAS measurements enable the detection of phosphorus-vacancy (P-V) and oxygen-vacancy (O-V) complexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Olson, G. L. and Roth, J. A., Handbook of Crystal Growth 3, edited by Hurle, D. T. J. (Elsevier, Amsterdam, 1994), pp. 257312.Google Scholar
2. Szeles, C. and Lynn, K. G., Encyclopedia of Applied Physics, Vol. 14 (VCH Publishers,1996), pp. 607632.Google Scholar
3. Ghosh, V. J., Alatalo, M., Asoka-Kumar, P., Lynn, K. G., and Kruseman, A. C., Appl. Surf. Sci. 116, 278 (1997)10.1016/S0169-4332(96)01069-0Google Scholar
4. Alatalo, M., Asoka-Kumar, P., Ghosh, V. J., Nielsen, B., Lynn, K. G., Kruseman, A. C., Veen, A. Van, and Puska, M. J., J. Phys. Chem. Solids 59, 55 (1998)10.1016/S0022-3697(97)00131-5Google Scholar
5. Szeles, C., Asoka-Kumar, P., Lynn, K.G., Gossmann, H. J., Unterwald, F. C., Boone, T., Appl. Phys. Lett. 66, 2855 (1995)10.1063/1.113452Google Scholar
6. Priolo, F., Mannino, G., Miccichè, M., Privitera, V., Napolitani, E., Carnera, A., Appl. Phys. Lett. 72, 3011 (1998)10.1063/1.121524Google Scholar
7. Petkov, M. P., Chen, C. M., Atwater, H. A., Rassiga, S., Lynn, K. G., Appl. Phys. Lett. 76, 1410 (2000)10.1063/1.126047Google Scholar
8. Kennedy, E. F., Csepregi, L., Mayer, J. W., Sigmon, T. W., J. Appl. Phys. 48, 4241 (1977)10.1063/1.323409Google Scholar
9. Xu, J., Roth, E. G., and Holland, O. W., Mills, A. P., Suzuki, R., Appl. Phys. Lett. 74, 997 (1999)10.1063/1.123453Google Scholar
10. Petkov, M. P., Weber, M. H., Lynn, K. G., Crandall, R. S., Ghosh, V. J., Phys. Rev. Lett. 82, 3819 (1999)10.1103/PhysRevLett.82.3819Google Scholar
11. Nielsen, B., Holland, O. W., Leung, T. C., Lynn, K.G., J. Appl. Phys. 74, 1636 (1993)10.1063/1.354813Google Scholar