Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:07:47.318Z Has data issue: false hasContentIssue false

A Study of Vacancies in Pure Aluminium and Their Role in the Diffusion of Lithium in a Dilute Al-Li Alloy Using the Embedded Atom Model

Published online by Cambridge University Press:  10 February 2011

P. M. Derlet
Affiliation:
Department of Physics, Norwegian University of Science and Technology (NTNU), N-7034 Trondheim, Norway.
R. Hoier
Affiliation:
Department of Physics, Norwegian University of Science and Technology (NTNU), N-7034 Trondheim, Norway.
R. Holmestad
Affiliation:
Department of Physics, Norwegian University of Science and Technology (NTNU), N-7034 Trondheim, Norway.
K. Marthinsen
Affiliation:
Department of Metallurgy, Norwegian University of Science and Technology (NTNU), N-7034 Trondheim, Norway.
N. Ryum
Affiliation:
Department of Metallurgy, Norwegian University of Science and Technology (NTNU), N-7034 Trondheim, Norway.
Get access

Abstract

Constant temperature and pressure molecular dynamics are employed to study bulk Al and the substitutional Al-Li alloy using the embedded atom model. The appropriate embedding energy functionals and pair potentials have been determined using known experimental data of bulk Al and Li, together with the results of density functional theory studies of small Aln-Lim clusters and the ordered Al3Li crystallographic phase. The primary goal is to study the role vacancies play in the early stages of the nucleation and growth of the Al3Li crystallographic phase. To this end we present the preliminary results of a study of vacancy diffusion in Al, and Li diffusion through the Al matrix via a vacancy mechanism. In the present work the results of vacancy diffusion are analysed using a modified inverse Laplace transform, producing a continuous distribution of vacancy hopping times which reproduces the characteristic times for both the single and double vacancy hopping events.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, Z. M. and Shiflet, G. J., Metall. Mater. Trans A 27, 1599 (1996)Google Scholar
2. Wang, Z. M. and Shiflet, G. J., Metall. Mater. Trans A 29, 2073 (1998)Google Scholar
3. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983)Google Scholar
4. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984)Google Scholar
5. Voter, A. F., Intermetallic Compounds: Vol. 1, Principles. Edited by Westbrook, J. H. and Fleischer, R. L., 1994 John Wiley and Sons Ltd, 77 Google Scholar
6. Rose, J. H., Smith, J. R., Francisco Guinea, and John Ferrante, Phys. Rev. B 29, 2963 (1984)Google Scholar
7. Johnson, R. A., Phys. Rev. B 37, 3924 (1988)Google Scholar
8. Mei, J., Davenport, J. W. and Fernando, G. W., Phys. Rev. B 43, 4653 (1991)Google Scholar
9.For atoms of the same type Eq. 1 is invariant with respect to the composite transformation F[ρ]←F[ρ]+ κρ and φ(r)←φ(r)- 2κf(r).Google Scholar
10. Frank, W., Breier, U, Elsässer, C., and Fähnle, M., Phys. Rev. B 48, 7676 (1993)Google Scholar
11. Benedek, R., Yang, L. H., Woodward, C., and Min, B. I., Phys. Rev. B 45, 2607 (1992)Google Scholar
12. Gillan, M. J., J. Phys: Condens. Matter 1, 689 (1989)Google Scholar
13. Mehl, M. J. and Klein, B. M., Physics B 172, 211 (1991)Google Scholar
14. Chetty, N., Weinert, W., Rahman, T. S., and Davenport, J. W., Phys. Rev. B 52, 6313 (1995)Google Scholar
15. Jacucci, G. and Taylor, R., J. Phys. F: Metal Phys. 9, 1489 (1979)Google Scholar
16. Derlet, P. M., Høier, R., Holmestad, R., Marthinsen, K., Ryum, N., submitted to Phys. Rev. B.Google Scholar
17. Ehrhart, P., Jung, P., Schulta, H., and Ullmaier, H. in Atomic Defects in Metals, edited by Ullmaier, H., Landolt-Börnstein, , New Series, Group III, Vol. 25 (Springer-Verlag, Berlin, 1990)Google Scholar
18. Feder, R., Phys. Rev. B 4, 828 (1970)Google Scholar
19. Schultz, H., Mater. Sci. Eng 4, 1 (1991)Google Scholar
20. Majumder, C., Das, G. P., Kulshrestha, S. K., Shah, Vaishali and Kanhere, D. G., Chem. Phys. Lett. 261, 515 (1996)Google Scholar
21. Shah, V., Kanhere, D. G., Majumder, C. and Das, G. P., J. Phys.: Condens. Matter 9, 2165 (1997)Google Scholar
22. Mehl, M. J., Phys. Rev. B 47, 2493 (1993)Google Scholar
23. Simmons, G. and Wang, H., Single crystal elastic constants and calculated aggregate properties: a handbook (MIT Press, Cambridge, Mass., 1971)Google Scholar
24. Harrison, W. A., Electron Structure and the Properties of Solids, (W. H. Freeman and Company, 1980) Section~17-bGoogle Scholar
25. Zhang, W., Xie, Q. and Ge, X., J. Appl. Phys. 82, 578 (1996)Google Scholar
26. Fano, A. Da and Jacucci, G., Phys. Rev. Lett. 39, 950 (1977)Google Scholar
27.One may follow the vacancy if an imaginary particle is inserted into the void and a force is devised with which it interacts, but does not influence, the surrounding lattice. See Manninen, M. and , Hakkinen, J. of Comp. Phys. 100, 197 (1992)Google Scholar
28. Laakkonen, J. and Nieminen, R. M., J. Phys. C 21, 3663 (1988)Google Scholar
29. Bradshaw, F. and Pearson, S., Phil. Mag. 2, 570 (1957)Google Scholar
30. DeSorbo, W. and Turnbull, D., Acta Met. 7, 83 (1957)Google Scholar
31. Provencher, S. W., Comput. Phys. Commun. 27, 213 (1982), Comput. Phys. Commun. 27, 229 (1982), CONTIN user manual, EMBL technical report DA05m (European Molecular Biology Laboratory, 1982)Google Scholar
32. Voter, A. F., J. Chem. Phys. 106, 4665 (1996), Phys. Rev. Lett. 78, 3908 (1997), Phys. Rev. B 57, R13985 (1998).Google Scholar
33. Anderson, J. B., Adv. Chem. Phys. 91, 381 (1995).Google Scholar