Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:46:29.607Z Has data issue: false hasContentIssue false

Study of The Transversal Electron Mobility in Heterojunction Bipolar Transistors with Strained SI1−x Gex-Base

Published online by Cambridge University Press:  25 February 2011

J. Poortmans
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
M. Caymax
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
A. Van Ammel
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
M. Libezny
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
J. Nijs
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

The effective transversal mobility of the minority carrier electrons in asymmetrically strained p-type Si1−x Gex -layers, grown on a Si (100) substrate, is studied as a function of boron doping concentration and Ge-content x. The experiments are based on the temperature dependence (290 to 400K) of the collector current enhancement of heterojunction bipolar transistors with a pseudomorphic Si1−x Gex-base. The interpretation of these results is based on new insights about the effective density of states in the valence band of these strained layers [1]. We will present first experimental evidence of the theoretical calculations in [1]. From this we will derive then the value of the NcNv -product for the strained Si1−x Gex-alloy. This allows to extract the ratio of the electron mobility in Si and strained Si1−xGex. We found an enhancement of the mobility when the B-doping level is around 1018 cm−3 and 0.08<x<0.16. At higher values of the Ge-content and the doping level, the enhancement is reduced again.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

[1] Manku, T. and Nathan, A., Journal of Applied Physics 69, 8414–6 (1991b).Google Scholar
[2] Swirhun, S. E.; Kane, D., E. and Swanson, R. M., IEDM Techn. Dig. 298301, (1988)Google Scholar
[3] Wang, C. H.; Misiakos, K. and Neugroschel, A., Appl. Phys. Lett. 57 (2), 159161, (1990) also IEEE El. Dev. Lett., 11(12), (1990)Google Scholar
[4] King, C. A.; Hoyt, J. L.; Gibbons, F. J., IEEE Trans. El. Dev., 36(10), 20932103 (1989)Google Scholar
[5] Pruymboom, A.; Slotboom, J. W.; Gravesteijn, D. J.; Fredriksz, C. W.; Van Gorkum, A. A.; Van De Heuvel, J. M.; Van Rooij-Mulder, J. M. L.; Streutker, G. and Van de Walle, G. F. A., IEEE El. Dev. Lett., 12, 357359 (1991)Google Scholar
[6] Prinz, E. J.; Garone, P. M.; Schwarz, P. V.; Xiao, X. and Sturm, J. C., IEEE El. Dev. Lett., 12(2), 4244, (1991)Google Scholar
[7] Hinckley, J. M.; Sankaran, V. and Singh, J., Appl. Phys. Lett. 55 (19), 20082010 (1989)Google Scholar
[8] Kay, L.E. and Tang, T.-W., Journal of Applied Physics 70, 1483–8 (1991).Google Scholar
[9] Manku, T. and Nathan, A., IEEE Trans. El. Dev. 22(9), 20822089, (1992)Google Scholar
[10] People, R. and Bean, J.C., Appl. Phys. Lett. 48, 538540(1986).Google Scholar
[11] Chun, S. K. and Wang, K. L., IEEE Trans. El. Dev. 22(9), 21532164, (1992)Google Scholar
[12] McGregor, J. et al., presented at the EMC-conference, (1992)Google Scholar
[13] Prinz, E., J.; Garone, P. M.; Schwarz, P. V.; Xiao, X. and Sturm, J. C., IEDM Techn. Dig., 639642, (1989)Google Scholar
[14] Caymax, M.; Poortmans, J.; Van Ammel, A. and Nijs, F. J. in Proceedings of the Second International Conference on Electronic Materials, edited by Chang, R. P. H., Geis, M., Meyerson, B., Miller, D. A. B. and Ramesh, R. (Mater. Res. Soc. Proa, Pittsburgh, PA 1990), 519524 Google Scholar