Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:21:25.837Z Has data issue: false hasContentIssue false

Study of the Thermoluminescent Characteristics of Ceramic Roof Tiles Exposed to Beta Radiation

Published online by Cambridge University Press:  20 December 2012

A. R. García-Haro
Affiliation:
Departamento de Investigación en Polímeros y Materiales de la Universidad de Sonora, Apdo. Postal 130, Hermosillo, Sonora 83000 México.
R. Bernal
Affiliation:
Departamento de Investigación en Física de la Universidad de Sonora, Apdo. Postal 5-088, Hermosillo, Sonora, 83000, México.
C. Cruz-Vázquez
Affiliation:
Departamento de Investigación en Polímeros y Materiales de la Universidad de Sonora, Apdo. Postal 130, Hermosillo, Sonora 83000 México.
S.E. Burruel-Ibarra
Affiliation:
Departamento de Investigación en Polímeros y Materiales de la Universidad de Sonora, Apdo. Postal 130, Hermosillo, Sonora 83000 México.
F. Brown
Affiliation:
Departamento de Investigación en Polímeros y Materiales de la Universidad de Sonora, Apdo. Postal 130, Hermosillo, Sonora 83000 México.
Get access

Abstract

In this work, thermoluminescence (TL) characteristics of roof tile ceramic samples previously exposed to beta radiation are reported for the very first time. TL measurements were carried out using powdered samples obtained by the the fine-grained method, with grain size ranged from 300 nm to 5 μm. Characteristic thermoluminescence glow curves showed a complex structure with a dosimetric maximum located at ~ 200 °C. TL response of roof tile samples increases as the radiation dose increases in the 25 Gy to 1.6 kGy range. One response showed a linear behaviour, with no evidence of saturation within the dose interval investigated. The entire TL glow curve exhibited a remarkable reusability during 10 consecutive irradiation-TL readout cycles. The total TL signal showed a very low fading and remained almost constant after 3 h of irradiation and the corresponding TL readout. TL dosimetry features of powdered roof tile place it as a promising material in retrospective dosimetry as well as in possible TL dating applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murthy, K. V. R.. IOP Conf. Series, Materials Science and Engineering 2 (2009), 012024O.Google Scholar
Chen, R. and McKeever, S. W. S., Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997).10.1142/2781CrossRefGoogle Scholar
Polymeris, G.S., Kitis, G., Kiyak, N.G., Sfamba, I., Subedi, B. and Pagonis, V., Applied Radiation and Isotopes 69, 12551262 (2011).CrossRefGoogle Scholar
Bailiff, I.K. and Mikhailik, V.B., Radiation Measurements 38, 9199 (2004).CrossRefGoogle Scholar
Espinosa, G., Golzarri, J.I., and Santiago, P., Revista Mexicana de Física S 54 (1), 1721 (2008).Google Scholar
Göksu, H.Y., Bailiff, I.K. and Mikhailik, V.B., Radiation Measurements 37, 323327 (2003).CrossRefGoogle Scholar
Bailiff, I.K., Radiation Measurements 24, 507511 (1995).CrossRefGoogle Scholar
Bailiff, I.K., Radiation Measurements 27, 923941 (1997).CrossRefGoogle Scholar
Lian, O.B. and Huntley, D.J. in: Tracking Environmental Change Using Lake Sediments, Basin Analysis, Coring, and Chronological Techniques edited by Last, W.M. and Smol, J.P., Vol. 1, Developments in Paleoenvironmental Research, chapter 12, Kluwer Academic Publishers (2002).Google Scholar
Zimmerman, D.W., Archaeometry 13, 29 (1971).CrossRefGoogle Scholar
McKeever, H S.W.S., Thermoluminescence of Solids (Cambridge University Press, Oxford, 1985).CrossRefGoogle Scholar