Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:15:03.991Z Has data issue: false hasContentIssue false

A Study of the Structure of CeO2 Nanorods

Published online by Cambridge University Press:  15 February 2011

Natalia Bugayeva*
Affiliation:
School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
Get access

Abstract

Hydrated CeOx2 nanoparticles of rod-like morphology have been obtained via a two-stage chemical precipitation method. The structure of the particles has been investigated using high resolution imaging techniques with a transmission electron microscope. The particles are found to exhibit five-fold symmetry and multiple twinning around {111} crystallographic planes. A structural model for the rod-like morphology is proposed. The mechanism of formation of such a structure is likely to depend on the unique chemistry of cerium and the preparation route.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thammachart, Matina, Meeyoo, Vissanu, Risksomboon, Thirasak, Osuwan, Somchai, Catalysis Today 68 (2001), 5361.Google Scholar
2. Wu, G. S., Xie, T., Yuan, X. Y., Cheng, B. C. and Zhang, L. D., Mater. Res. Bull. 2004 (39), 10231028.Google Scholar
3. Cordatos, H., Bunluesin, T., Stubenrauch, J., Vohs, J. M. and Gorte, R. J., J. Phys. Chem. 1996, 100, 785789.Google Scholar
4. Hernandez, R., Diaz, G., Vazquez, A., Reyes – Gasga, J. and Jose – Yacaman, M., Langmuir 7 (1991) 15461549.Google Scholar
5. Marks, L. D., Phil. Mag. A v. 49, n. 1 (1984) 8193.Google Scholar
6. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W., Phys. Rev. Lett. v. 53, n. 20 (1984) 19511953.Google Scholar
7. Hofmeister, H., Nepijko, S. A., Ievlev, D. N., Schulze, W., Ertl, G., J. Cryst. Growth 234 (2002) 773781.Google Scholar
8. Lisiecki, I., Filankembo, A., Sack – Kongehl, H., Weiss, K., Pileni, M. P., Urban, J., Phys. Rev. B v. 61, n. 7 (2000) 49684974.Google Scholar
9. Nepijko, S. A., Hofmeister, H., Sack – Kongehl, H., Schloegl, R., J. Cryst. Growth 213 (2000) 129134.Google Scholar
10. Martin, T. P., Bergmann, T., Goehlich, H., Lange, T., Chem. Phys. Lett. 176 (1991) 343.Google Scholar
11. Allpress, J. G., Sanders, J.V., Surf. Sci. 7 (1967) 1.Google Scholar
12. Bugayeva, N. and Saunders, M., submitted for publication.Google Scholar
13. Wang, Xun and Li, Yadong, Angew. Chem. Int. Ed., 2002, 41, n. 24, 4790.Google Scholar
14. Mullica, D. F., Oliver, J. D. and Milligan, W. O., Acta Cryst. A 34 (1978) 143157.Google Scholar
15. Vyas, S., Grimes, R. W., Gay, D. H. and Rohl, A. L., J. Chem. Soc., Faraday Trans., 94 (3) (1998) 427434.Google Scholar