Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:47:08.539Z Has data issue: false hasContentIssue false

A Study of the State Distribution in Various a-Si:H Materials by a New Capacitance Method

Published online by Cambridge University Press:  26 February 2011

I. Balberg*
Affiliation:
The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel.
Get access

Abstract

A new method for the determination of the deep states density in amorphous semiconductors is presented. The method is based on the carriersemission- time dependence of the capacitance-voltage characteristics of Schottky barriers. The applicability of the method for the study of hydrogenated amorphous silicon materials is demonstrated. The pitfalls associated with trying to deduce the density of states from a single capacitance-voltage characteristic are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cohen, J.D. in Hydrogenerated Amorphous Silicon, Vol.c, edited by Pankove, J.I., Semiconductors and Semimetals 21, 9 (1984).Google Scholar
2. Beichler, J., Rell, H. and Weber, K., J. Non Cryst. Solids 59–60, 257 (1983).Google Scholar
3. Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1969).Google Scholar
4. Balberg, I., J. Appl. Phys. 58, 2603 (1985).Google Scholar
5. Balberg, I. and Gal, E., J. Appl. Phys. 58, 2617 (1985).Google Scholar
6. Balberg, I. and Gal, E., J. Non Cryst. So-lids 77–78, 323 (1985).Google Scholar
7. Gal, E. and Balberg, I., Proc. of the XVII Photovoltaic Specialists Conf. (IEEE, New York, 1985), p.470.Google Scholar
8. Hirose, M., Suzuki, T. and Dohler, G.H., Appl. Phys. Lett. 34, 234 (1979).Google Scholar
9. Snell, A.J., Mackenzie, K.D., LeComber, P.G. and Spear, W.E., Philos. Mag.B. 40, 1 (1979).Google Scholar
10. Vlktorovltch, F, J. Appl. Phys. 52, 1392 (1981).Google Scholar
11. Michelson, G.E., Gelatos, A.V. and Cohen, J.D., Appl. Phys. Lett. 47, 412 (1985).Google Scholar
12. Gal, J E., Balberg, I. and Weisz, S.Z., unpublished.Google Scholar
13. Tiedje, T., Cebulka, J.M., Morel, D.L. and Abeles, B., Phys. Rev. Letters 46, 1425 (1981).Google Scholar
14. Rose, A., Concepts in Photoconductivity and Allied Problems (Wiley interscience, New York, 1963).Google Scholar
15. See for example: Chu, T.L., Chu, S.S., Ang, S.T., Duong, A. and Hwuang, C.G., J. Appl. Phys. 59, 3122 (1986).Google Scholar
16. Archibald, I.W. and Abram, R.A., Philos Mag.B. 48, 111 (1983).Google Scholar