Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T11:24:57.879Z Has data issue: false hasContentIssue false

Study of the Electrochemical Deposition of Cu/Sn Alloy Nanoparticles on Boron Doped Diamond Films for Electrocatalytic Nitrate Reduction

Published online by Cambridge University Press:  14 January 2013

Jorge T. Matsushima
Affiliation:
LABEMAC / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Andrea B. Couto
Affiliation:
LABEMAC / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Neidenei G. Ferreira
Affiliation:
LABEMAC / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Mauricio R. Baldan
Affiliation:
LABEMAC / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Get access

Abstract

This paper presents the study of the electrochemical deposition of Cu/Sn alloy nanoparticles on Boron Doped Diamond (BDD) films in order to improve their electrocatalytic activity and selectivity for application in nitrate electrochemical reduction. Cyclic voltammetry measurements evidenced the formation of Cu/Sn alloy electrodeposited on BDD electrode. The electrodeposited Cu/Sn can be better visualized by analyzing the dissolution process. By studying the dissolution peak separately, the dissolution peak of the Sn was obtained at a more positive potential, when compared with the dissolution peak of Cu. From the scanning electronic microscopy (SEM) analysis, the homogeneous distribution of the Cu/Sn alloys particles on BDD surface with grain size in nanometric scale was verified. From X-ray diffraction analysis, two Cu/Sn alloy phases (Cu41Sn11 and Cu10Sn3) were identified for the electrodeposits obtained at -0.5V and charge of 0.26 C. The electrocatalytic reduction of nitrate in 0.1 M Britton-Robinson (BR) buffer solution with pH 9 was analyzed. The BDD electrode modified with Cu/Sn alloy nanoparticles proved to potentiate the electrocatalytic reduction of nitrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tenne, R., Patel, K., Hashimoto, K. and Fujishima, A., J. Electroanal. Chem. 347, 409 (1993).10.1016/0022-0728(93)80105-QCrossRefGoogle Scholar
Panizza, M., Brillas, E. and Comninellis, C., J. Environ. Eng. Management 18, 139 (2008).Google Scholar
Schmalz, V., Dittmar, T., Haaken, D. and Worch, E., Water Res. 43, 5260 (2009).10.1016/j.watres.2009.08.036CrossRefGoogle Scholar
Levy-Clement, C., Ndao, N. A., Katty, A., Bernard, M., Deneuville, A., Comninellis, C. and Fujishima, A., Diam. Relat. Mater. 12, 606 (2003).10.1016/S0925-9635(02)00368-0CrossRefGoogle Scholar
Bouamrane, F., Tadjeddine, A., Butler, J. E., Tenne, R. and Levy-Clement, C., J. Electroanal. Chem. 405, 95 (1996).10.1016/0022-0728(95)04388-8CrossRefGoogle Scholar
Reuben, C., Galun, E., Cohen, H., Tenne, R., Kalish, R., Muraki, Y., Hashimoto, K., Fujishima, A., Butler, J.M. and Lévy-Clément, C., J. Electroanal. Chem. 396, 233 (1995).10.1016/0022-0728(95)03961-FCrossRefGoogle Scholar
Tenne, R., Patel, K., Hashimoto, K. and Fujishima, A., J. Electroanal. Chem. 347, 409 (1993).10.1016/0022-0728(93)80105-QCrossRefGoogle Scholar
Gelberg, K. H., Church, L., Casey, G., London, M., Roerig, D. S., Boyd, J. and Hill, M., Environ. Res. 80, 34 (1999).10.1006/enrs.1998.3881CrossRefGoogle Scholar
Campbell, F.W. and Compton, R.G., Anal. Bional. Chem. 396, 241 (2010).10.1007/s00216-009-3063-7CrossRefGoogle Scholar
Siné, G., Duo, I., El Roustom, B., Fóti, G. and Comninellis, C., J. App. Electrochem. 36, 847 (2006).10.1007/s10800-006-9159-2CrossRefGoogle Scholar
Welch, C.M. and Compton, R.G., Anal. Bioanal. Chem. 384, 601 (2006).10.1007/s00216-005-0230-3CrossRefGoogle Scholar
Toghill, K.E. and Compton, R.G., Electroanalysis 22, 1947 (2010).10.1002/elan.201000072CrossRefGoogle Scholar
Campbell, F.W. and Compton, R.G., Anal. Bioanal. Chem. 396, 241 (2010).10.1007/s00216-009-3063-7CrossRefGoogle Scholar
Dima, G.E., Vooys, A.C.A. and Koper, M.T.M., J. Electroanal. Chem. 554, 15 (2003).10.1016/S0022-0728(02)01443-2CrossRefGoogle Scholar
Ya Safanova, T. and Petrii, O.A., Russ. J. Electrochem. 34, 1137 (2002).Google Scholar
Shimazu, K., Goto, R. and Tada, K., Chem. Lett. 204 (2002).10.1246/cl.2002.204CrossRefGoogle Scholar
Ferreira, N. G., Silva, L. L. G., Corat, E. J., Trava Airoldi, V. J. and Iha, K., Braz. J. Phys. 29, 760 (1999).10.1590/S0103-97331999000400030CrossRefGoogle Scholar
Milhano, C., and Pletcher, D., J. Electroanal. Chem. 614, 24 (2008).10.1016/j.jelechem.2007.11.001CrossRefGoogle Scholar
Reyter, D., Bélanger, D. and Roué, L., J. Phys. Chem. C 113, 290 (2009).10.1021/jp805484tCrossRefGoogle Scholar
Bockris, J.O.M. and Kim, J., J. Appl. Electrochem. 27, 623 (1997).10.1023/A:1018419316870CrossRefGoogle Scholar