Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:53:50.408Z Has data issue: false hasContentIssue false

Study of SiF4-N2-H2 Plasmas for the Deposition of Fluorinated Silicon Nitride Films

Published online by Cambridge University Press:  22 February 2011

G. Cicala
Affiliation:
Centro di Studio per la Chimica dei plasmi, C.N.R., Dipartimento di Chimica-Université di Bari, Via G. Amendola 173, 70126 Bari, Italy.
G. Bruno
Affiliation:
Centro di Studio per la Chimica dei plasmi, C.N.R., Dipartimento di Chimica-Université di Bari, Via G. Amendola 173, 70126 Bari, Italy.
P. Capezzuto
Affiliation:
Centro di Studio per la Chimica dei plasmi, C.N.R., Dipartimento di Chimica-Université di Bari, Via G. Amendola 173, 70126 Bari, Italy.
M. Losurdo
Affiliation:
Centro di Studio per la Chimica dei plasmi, C.N.R., Dipartimento di Chimica-Université di Bari, Via G. Amendola 173, 70126 Bari, Italy.
Get access

Abstract

Radiofrequency glow discharges, operating under various conditions, have been used to deposit hydrogenated and fluorinated silicon nitride (a-Si,N:H,F) from SiF4-N2-H2 gas mixtures. The effect of the feeding mixture composition has been investigated in order to establish the optimum deposition conditions for stable silicon nitride. High H2-dilution of the feeding mixture has been found to produce transparent (Eg>5.6eV) and stoichiometric (N/Si=1.3) films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sinha, A. K., Levinstein, H.J., Smith, T.E., Quintana, G. and Haszko, S.E., J. Electrochem Soc. 125, 601 (1978).Google Scholar
2. Claassen, W.A.B., Valkenburg, W.G.J.N., Habraken, F.H.P.M., and Tamminga, Y., J. Electrochem Soc. 130, 2419 (1983).Google Scholar
3. Dun, H., Pan, P., White, F. R. and Hampy, R. E., J. Electrochem Soc. 128, 1555 (1981).Google Scholar
4. Jones, B.L., J. Non-Crystalline Solids 77&78, 956 (1985).Google Scholar
5. Parsons, G. N., Souk, J. H. and Batey, J., J. Appl. Phys. 70, 1553 (1991).Google Scholar
6. Livengood, R.E. and Hess, D.W., Appl. Phys. Lett. 50, 560 (1987).Google Scholar
7. Chang, C-P., Flamm, D.L., Ibbotson, D.E. and Mucha, J.A., J. Appl. Phys. 62, 1408 (1987).Google Scholar
8. Watanabe, N., Yoshida, M., Jiang, Y-C., Nomoto, T. and Abiko, I., Jpn. J. Appl. Phys. 30, L619 (1991).Google Scholar
9. Fujita, S., Ohishi, T., Toyoshima, H. and Sasaki, A., J. Appl. Phys. 57, 426 (1985).Google Scholar
10. Fujita, S., Toyoshima, H., Ohishi, T. and Sasaki, A., Jpn. J. Appl. Phys. 23, L144 (1984).Google Scholar
11. Fujita, S., Toyoshima, H., Ohishi, T. and Sasaki, A., Jpn. J. Appl. Phys. 23, L268 (1984).Google Scholar
12. Raider, F. I., Flitfch, R., Aboaf, J. A., Pliskin, W. A., J. Electrochem. Soc. 123, 1560 (1976).Google Scholar
13. Padmanabhan, R., Saha, N. C., J. Vac. Sci. Technol. A 6, 2226 (1988).Google Scholar
14. Thomas, S. and Mattox, R. J., J. Electrochem. Soc, 124, 1942 (1977).Google Scholar
15. Bruno, G., Capezzuto, P. and Cicala, G., J. Appl. Phys. 69, 7256 (1991).Google Scholar
16. Cicala, G., Bruno, G., Capezzuto, P. and Losurdo, M., Plasma Source Science Technol. 00, 00 (1992).Google Scholar