Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T11:06:38.007Z Has data issue: false hasContentIssue false

The Study of Si, Se and O-Implanted GaAs by Slow Positrons

Published online by Cambridge University Press:  03 September 2012

S. Fujii
Affiliation:
Opto-Electronics R&D Laboratories Sumitomo Electric Industries Ltd., 1 Taya-cho Sakae-ku Yokohama 244, Japan
S. Shikata
Affiliation:
Opto-Electronics R&D Laboratories Sumitomo Electric Industries Ltd., 1 Taya-cho Sakae-ku Yokohama 244, Japan
L. Wei
Affiliation:
Opto-Electronics R&D Laboratories Sumitomo Electric Industries Ltd., 1 Taya-cho Sakae-ku Yokohama 244, Japan
S. Tanigaw
Affiliation:
Opto-Electronics R&D Laboratories Sumitomo Electric Industries Ltd., 1 Taya-cho Sakae-ku Yokohama 244, Japan
Get access

Abstract

Variable-energy (0–30keV) positron beam studies have been carried out on 200 keV Se-implanted and 70 keV Si-implanted GaAs specimens before and after annealing for electrical activation. From the measurements of Doppler broadened profiles as a function of incident positron energy, it was found that vacancy clusters with high concentration were introduced in the annealed specimen after Se implantation. From the parallel measurement of electrical characteristics, a higher activation efficiency was found for the higher concentration of vacancy clusters. That fact implies that electrons supplied by the activation of Se also convert the charge state of As vacancies from positive to negative. In contrast, no vacancy clusters were introduced in the Si-implanted GaAs. On the other hand, oxygen clustering was found in annealed specimen after O implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haga, T., Tachino, N., Abe, Y., Kasahara, J., Okubora, A., and Hasegawa, H., J. Apppl. Phys., 66, 5809 (1989)CrossRefGoogle Scholar
2. Katayama, M., Inoue, Y., Usami, A., and Wada, T., J. Appl. Phys., 69, 3541 (1991)CrossRefGoogle Scholar
3. Ishikawa, T., Maeda, T. and Kondo, K., J. Appl. Phys., 68, L3343 (1990)CrossRefGoogle Scholar
4. Favennec, P. N., J. Appl. Phys., 47, 2532 (1976)CrossRefGoogle Scholar
5. Schnell, R. D., Gisdakis, S. and Alt, H. Ch., Appl. Phys. Lett., 59, 668 (1991)CrossRefGoogle Scholar
6. Uedono, A., Tanigawa, S., Sugiura, J., and Ogasawara, M., Jpn. J. Appl. Phys., 28, 1293 (1989)CrossRefGoogle Scholar
7. Mills, A. P. Jr and Wilson, R. J., Phys. Rev., A26, 90 (1982)Google Scholar
8. Lee, J. L., Uedono, A., Tanigawa, S., and Lee, J. Y., J. Appl. Phys., 68, 5571 (1990)Google Scholar
9. Mills, A. P. Jr, Pro. Int. School of Phvs. Enrico Fermi, course LXXXII, edited by Brandt, W. and Dupasquier, A. (North-Holland, Amsterdan 1983), p431 Google Scholar
10. Uedono, A. and Tanigawa, S., Jpn. J. Appl. Phys. 29, 909 (1990)CrossRefGoogle Scholar
11. Dannefaer, S. and Kerr, D., J. Appl. Phys., 60 591 (1986)Google Scholar
12. Dlubek, G., Brummer, O., Plazaola, F. and Hautojarvi, P., J. Phys. C, 19, 331 (1986)CrossRefGoogle Scholar
13. Lee, J. L., Wei, L., Tanigawa, S. and Kawabe, M., J. Appl. Phys., 69, 6364 (1991)Google Scholar
14. Tan, T. Y. and Gosele, U., Appl. Phys. Lett., 52, 1240 (1988)CrossRefGoogle Scholar
15. Dannefaer, S. and Kerr, D., J. Appl. Phys., 60, 1313 (1986)CrossRefGoogle Scholar
16. Wei, L., Tabuki, Y., Kondo, H., Tanigawa, S., Nagai, R. and Takeda, E., J. Appl. Phys., 70, 7543 (1991)CrossRefGoogle Scholar