Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T17:56:46.970Z Has data issue: false hasContentIssue false

Study of Neutron-Irradiated Quartz Upon Heat Treatment: A Relation Between Tunneling States and Microtwins?

Published online by Cambridge University Press:  16 February 2011

V. Keppens
Affiliation:
K.U.Leuven, Dept. of Physics, Celestijnenlaan 200D, B-3001 Leuven, Belgium
C. Laermans
Affiliation:
K.U.Leuven, Dept. of Physics, Celestijnenlaan 200D, B-3001 Leuven, Belgium
Get access

Abstract

This paper deals with the study of the tunneling states (TS) in neutron-irradiated quartz. Ultrasonic attenuation measurements are carried out for a dose of 1.2 x 1019 n/cm2, before and after heat treatment at 700°C and 840°C. The data give evidence for significant changes in the distributions of the tunneling parameters upon heat treatment. These modifications provide interesting information about the nature of the tunneling states and will be discussed in view of the possible relation between the TS and the twin domains: the influence of heat treatment on the distribution of the tunneling states can be related to changes in the twin formation upon annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anderson, P.W., Halperin, B.I. and Varma, C.M., Philos. Mag. 25, 1 (1972); W.A. Phillips, J. Low Temp. Phys. 7, 351 (1972).Google Scholar
2. Phillips, W.A. (ed.), Amorphous Solids: Low Temperature Properties (Springer, Berlin, 1981).Google Scholar
3. Laermans, C., Phys. Rev. Lett. 42, 50 (1979).Google Scholar
4.For a review, see Laermans, C., in Structure and Bonding in Non-crystalline Solids, edited by Walrafen, G. and Revesz, A. (Plenum, New York, 1986), p.325.Google Scholar
5. Vanelstraete, A. and Laermans, C., Phys. Rev. B 42, 5842 (1990).Google Scholar
6. Jäckle, J., Z. Phys. B 257, 212 (1972).Google Scholar
7. Raychaudhuri, A.K. and Hunklinger, S., Z. Phys. B 57, 113 (1984).Google Scholar
8. Doussineau, P., Frénois, C., Leisure, R.G., Levelut, A. and Prieur, J.Y., J.Phys. (Paris) 41, 1193 (1980).Google Scholar
9. Tendeloo, G. Van, Landuyt, J. Van and Amelinckx, S., Phys. Stat. Sol. A 33, 723 (1976).Google Scholar
10. Grimm, H. and Dorner, B., J. Phys. Chem. Solids 36, 407 (1975).Google Scholar
11. Comes, R., Lambert, M. and Guinier, A., in Interaction of Radiation with Solids, edited by Bishay, A. (Plenum, New York, 1967) p.319.Google Scholar
12. Grasse, D., Peisl, J. and Dorner, B., Nucl. Instrum. Methods Phys. Res. B 1, 183 (1984).Google Scholar
13. Vanelstraete, A. and Laermans, C., Phys. Rev. B 38, 6312 (1988).Google Scholar
14. Laermans, C. and Vanelstraete, A., Phys. Rev. B 34, 1405 (1986).Google Scholar
15. Vanelstraete, A. and Laermans, C., Phys. Rev. B 39, 3905 (1989).Google Scholar
16. Comer, J.J., J. Cryst. Growth 15, 179 (1972).Google Scholar
17. Vanelstraete, A., Laermans, C., Lejarraga, L., Schickfus, M. Von and Hunklinger, S., Z. Phys. B 70, 19 (1988).Google Scholar