Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:55:14.606Z Has data issue: false hasContentIssue false

Study of Microstructure and Mechanical Properties of an Ankle Prosthesis Removing

Published online by Cambridge University Press:  12 May 2015

J. G. Flores Becerra
Affiliation:
Universidad Politécnica Valle de México; Grupo Ciencia e Ingeniería de Materiales, UPVM, Tultitlán. Edo de México
N. López Perrusquia*
Affiliation:
Universidad Politécnica Valle de México; Grupo Ciencia e Ingeniería de Materiales, UPVM, Tultitlán. Edo de México
M. A. Doñu Ruiz
Affiliation:
Universidad Politécnica Valle de México; Grupo Ciencia e Ingeniería de Materiales, UPVM, Tultitlán. Edo de México
A. López Perrusquia*
Affiliation:
Instituto Nacional de Rehabilitación (INR), Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, CP14389, México
J.V. Cortes Suarez
Affiliation:
Universidad Autónoma Metropolitana Azcapotzalco Avenida San Pablo 180, Azcapotzalco, Reynosa Tamaulipas, 02200 Ciudad de México, Distrito Federal
*
Get access

Abstract

This work studies the change microstructural and mechanical properties of an ankle prosthetic material 316LVM stainless steel, retired from a 36 year old patient. The medical grade 316LVM stainless steel was characterized by scanning electron microscopy (SEM), optical microscopy (OM), X-ray diffraction (XRD), hardness Rockwell C (HRC) and nanoindentation tests. The results showed that the ankle prosthesis has different microstructural change along the implant and presence of corrosion pits with inclusions, the mechanical properties like modulus elasticity and hardness decrease.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Van Noort, R, Journal of Materials Science 22: 3801–381. (1987).CrossRefGoogle Scholar
Fraker, A. “Corrosion of metallic implants and prosthetic devices”, ASM International Metals Handbook, 4th ed.pp. 1324. (1992).Google Scholar
Zhi-Qiang, Zhang, Li-Min, Dong, Yang, Yang, Shao-Xuan, Guan, Yu-Yin, Liu, Rui, Yang, Trans Nonferrous Met Soc 22: 26042608. (2012).Google Scholar
Bou-Saleh, Z., Shahryari, A., Omanovic, S. Thin Solid Films 515: 47274737. (2007).CrossRefGoogle Scholar
Thamaraiselvi, T. V. and Rajeswari, S. Trends Biomater Artif Organs 18: 242246. (2005).Google Scholar
Mihailović, Marija, Pataric, Aleksandra, Gulišija, Zvonko, Veljović, Djordje, Janaćković, Djordje. Chem Indu & Chem Engin Quarter 1: 4552. (2011).CrossRefGoogle Scholar
Sojitra, Prakash, Engineer, Chhaya, Kothwala, Devesh, Raval, Ankur, Kotadia, Haresh, Mehta, Girish. Trends Biomater Artif Organs 23:115121. (2010).Google Scholar
Sieniawski, Jan, Filip, Ryszard, Waldemar Ziaja Materials & Design,18: 361363. (1997).CrossRefGoogle Scholar
Aperador, W., Melgarejo, M., Ramírez–Martin, C., The man and the machine, 38:5158. (2012).Google Scholar
Multigner, M., Frutos, E, González-Carrasco, J. L, Jiménez, J. A. Marín, P, Ibáñez, J., Materials Science and Engineering 29:13571360. (2009).CrossRefGoogle Scholar
Multigner, M., Ferreira-Barragáns, S, Frutos, E., Jaafar, M., Ibáñez, J., Marín, P., Pérez-Prado, M. T., González-Doncel, G., Asenjo, A., González-Carrasco, J. L., Surface & Coatings Technology 205:18301837. (2010)CrossRefGoogle Scholar
Krawczynska, A. T, Brynka, T, Gierlotka, S, Grzanka, E., Stelmakh, S, Palosz, B, Lewandowskaa, M, Kurzydlowski, K J. Mechanics of Materials 67:2532. (2013)CrossRefGoogle Scholar
Narayan, R. ASM Handbook, Materials for Medical Devices, Medical Implant Materials 23: 200210. (2012)Google Scholar