Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T20:45:34.408Z Has data issue: false hasContentIssue false

Study of Magnetron Sputter Deposition of Metal Gate Electrodes

Published online by Cambridge University Press:  01 February 2011

Mengqi Ye
Affiliation:
[email protected], Applied Materials, Inc., Thin Films Group, 3050 Bowers Ave., M/S 1158, P.O. Box 58039, Santa Clara, CA, 95054, United States
Dave Liu
Affiliation:
[email protected], Applied Materials, Inc., 3050 Bowers Ave., P.O. Box 58039, Santa Clara, CA, 95054, United States
Peijun Ding
Affiliation:
[email protected], Applied Materials, Inc., 3050 Bowers Ave., P.O. Box 58039, Santa Clara, CA, 95054, United States
Steven Hung
Affiliation:
[email protected], Applied Materials, Inc., 3050 Bowers Ave., P.O. Box 58039, Santa Clara, CA, 95054, United States
Khaled Ahmed
Affiliation:
[email protected], Applied Materials, Inc., 3050 Bowers Ave., P.O. Box 58039, Santa Clara, CA, 95054, United States
Get access

Abstract

A systematic study of magnetron sputter deposition of metal gate is presented. On-wafer probes were used to measure ion current and floating voltage. Charge monitoring wafers was used to evaluate charging damage. C-V measurements showed that the interface trap density of metal gated MOS capacitors was reduced with thicker dielectric layer thickness and with the insertion of ALD deposited buffer layer. Lower pressure, higher sputtering power, and pulsed DC sputtering were found to cause larger plasma damage to the ultra-thin dielectric layer, most likely due to increased energetic particle bombardment as a result of higher plasma density and higher ion and neutral energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yeo, Y.C., Lu, Q., Ranade, P., Takeuchi, H., Yang, K., Polishchuk, I., King, T. J., Hu, C., Song, S. C., Luan, H. F., and Kwong, D. L., IEEE Electron Device Lett., 22, 227 (2001).Google Scholar
2. Pan, J., Woo, C., Yang, C.Y., Bhandary, U., Guggilla, S., Krishna, N., Chung, H., Hui, A., Yu, B., Xiang, Q., and Lin, M.R., IEEE Electron Device Lett., 24, 304 (2003).Google Scholar
3. Misra, V., Zhong, H., and Lazar, H., IEEE Electron Device Lett., 23, 354 (2002).Google Scholar
4. Chen, C.C., Lin, H.C., Chang, C.Y., Chao, T.S., Huang, S.C., Wu, W.F., Huang, T.Y., and Liang, M.S., 5th Intl. Symp. On Plasma Process-Induced Damage, 117 (2000).Google Scholar
5. Gabriel, C. T., J. Vac. Sci. Technol. A, 17, 1494 (1999).Google Scholar
6. Takeuchi, H., She, M., Watanabe, K., King, T.J., 61st Device Research Conf., 35 (2003).Google Scholar
7. Ushiki, T., Yu, M.C., Kawai, K., Shinohara, T., Ino, K., Morita, M., and Ohmi, T., 36th Annual International Reliability Physics Symp., 307 (1998).Google Scholar
8. Nicolian, E. H. and Brews, J. R., MOS Physics and Technology (Wiley, New York, 1982).Google Scholar
9. Brews, J. R., Solid-State Electron. 26, 711 (1983).Google Scholar
10. Ma, S. and Kutney, M. C., Proc. 6th ICMI Symp., to be published (2005).Google Scholar
11. Bradley, J. W., Backer, H., Aranda-Gonzalvo, Y., Kelly, P. J. and Arnell, R. D., Plasma Sources Sci. and Technol. 11, 165 (2002).Google Scholar
12. Ding, P., Ye, M., Liu, D., Yang, H., Wu, F., Rengarajan, S., Hung, S., Ahmed, K., Pau, W., Fu, J., Arghavani, R., Z, Xu, Nanochip Technol. J. 4, 38 (2006).Google Scholar