Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:36:54.401Z Has data issue: false hasContentIssue false

Study of lattice vibration and thermal conductivity of BiCuSeO from first-principles calculations

Published online by Cambridge University Press:  17 March 2015

Jingxuan Ding
Affiliation:
School of materials science and engineering, Tsinghua University, Beijing 100084, P.R. China.
Ben Xu
Affiliation:
School of materials science and engineering, Tsinghua University, Beijing 100084, P.R. China. Key laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, P.R. China.
Yuanhua Lin
Affiliation:
School of materials science and engineering, Tsinghua University, Beijing 100084, P.R. China.
Get access

Abstract

The BiCuSeO has been proved to be one of the best oxide-based thermoelectric materials in recent years. Its electric properties have been widely studied, yet the lattice thermal conductivity was only discussed roughly. Our investigation suggests that the anharmonic vibration and the interlayer-interaction plays the crucial role in reducing the intrinsic lattice thermal conductivity. The thermal conductivity has been calculated based on quasi-harmonic approximation and detailed contribution have been discussed. The calculated data have good agreement with the experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, F., Li, J.-F., Zhao, L.-D., Xiang, K., Liu, Y., Zhang, B.-P., Lin, Y.-H., Nan, C.-W., and Zhu, H.-M., Energy & Environmental Science 5, 7188 (2012).CrossRefGoogle Scholar
Li, J., Sui, J., Barreteau, C., Berardan, D., Dragoe, N., Cai, W., Pei, Y., and Zhao, L.-D., Journal of Alloys and Compounds 551, 649 (2013).CrossRefGoogle Scholar
Li, F., Wei, T.-R., Kang, F., and Li, J.-F., Journal of Materials Chemistry A 1, 11942 (2013).CrossRefGoogle Scholar
Barreteau, C., Berardan, D., Amzallag, E., Zhao, L., and Dragoe, N., Chemistry of Materials 24, 3168 (2012).CrossRefGoogle Scholar
Li, J., Sui, J., Pei, Y., Barreteau, C., Berardan, D., Dragoe, N., Cai, W., He, J., and Zhao, L.-D., Energy & Environmental Science 5, 8543 (2012).CrossRefGoogle Scholar
Liu, Y., Zhao, L.-D., Liu, Y., Lan, J., Xu, W., Li, F., Zhang, B.-P., Berardan, D., Dragoe, N., Lin, Y.-H., et al. ., Journal of the American Chemical Society 133, 20112 (2011).CrossRefGoogle Scholar
Lan, J.-L., Liu, Y.-C., Zhan, B., Lin, Y.-H., Zhang, B., Yuan, X., Zhang, W., Xu, W., and Nan, C.-W., Advanced Materials 25, 5086 (2013).CrossRefGoogle Scholar
Sui, J., Li, J., He, J., Pei, Y.-L., Berardan, D., Wu, H., Dragoe, N., Cai, W., and Zhao, L.-D., Energy Environ. Sci. 6, 2916 (2013).CrossRefGoogle Scholar
Stampler, E. S., Sheets, W. C., Bertoni, M. I., Prellier, W., Mason, T. O., and Poeppelmeier, K. R., Inorganic chemistry 47, 10009 (2008).CrossRefGoogle Scholar
Zou, D., Xie, S., Liu, Y., Lin, J., and Li, J., J. Mater. Chem. A 1, 8888 (2013).CrossRefGoogle Scholar
Delaire, O., Ma, J., Marty, K., May, A. F., McGuire, M. A., Du, M.-H., Singh, D. J., Podlesnyak, A., Ehlers, G., Lumsden, M., et al. ., Nature materials 10, 614 (2011).CrossRefGoogle Scholar
Lee, S., Esfarjani, K., Luo, T., Zhou, J., Tian, Z., and Chen, G., Nature communications 5 (2014).Google Scholar
Esfarjani, K, Chen, G, Stokes, H T. Heat transport in silicon from first-principles calculations[J]. Physical Review B, 2011, 84(8): 085204.CrossRefGoogle Scholar
Tian, Z, Garg, J, Esfarjani, K, et al. . Phonon conduction in PbSe, PbTe, and PbTe 1− x Se x from first-principles calculations[J]. Physical Review B, 2012, 85(18): 184303.CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Computational Materials Science 6, 15 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Physical Review B 54, 11169 (1996).CrossRefGoogle Scholar
Togo, A., Oba, F., and Tanaka, I., Physical Review B 78, 134106 (2008).CrossRefGoogle Scholar
Becke, A. D., The Journal of Chemical Physics 98, 5648 (1993).CrossRefGoogle Scholar
Stephens, P., Devlin, F., Chabalowski, C., and Frisch, M. J., The Journal of Physical Chemistry 98, 11623 (1994).CrossRefGoogle Scholar
Perdew, J. P., Ziesche, P., and Eschrig, H., Electronic structure of solids 91, Vol. 11 (Akademie Verlag, Berlin, 1991).Google Scholar
Becke, A. D., Physical Review A 38, 3098 (1988).CrossRefGoogle Scholar
Lee, C., Yang, W., and Parr, R., Phys. Rev. A 38, 3098 (1988).Google Scholar
Anisimov, V. I., Zaanen, J., and Andersen, O. K., Physical Review B 44, 943 (1991).CrossRefGoogle Scholar
Br_euesch, P., Phonons, Theory and Experiments: Lattice dynamics and models of interatomic forces (Springer-Verlag, 1987).Google Scholar
Berdonosov, P., Kusainova, A., Kholodkovskaya, L., Dolgikh, V., Akselrud, L., and Popovkin, B., Journal of Solid State Chemistry 118, 74 (1995).CrossRefGoogle Scholar
Morelli, D., Jovovic, V., and Heremans, J., Physical review letters 101, 035901 (2008).CrossRefGoogle Scholar