Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:43:54.859Z Has data issue: false hasContentIssue false

A Study of Hydrogen Atom Adsorption on Gallium Arsenide (100) by Multiple Internal Reflection Infrared Spectroscopy

Published online by Cambridge University Press:  16 February 2011

Paul E. Gee
Affiliation:
Department of Chemical Engineering, University of California, Los Angeles, CA 90024-1592
Robert F. Hicks
Affiliation:
Department of Chemical Engineering, University of California, Los Angeles, CA 90024-1592
Get access

Abstract

We have studied the adsorption of hydrogen atoms on GaAs (100) by multiple internal reflection infrared spectroscopy. The crystal was etched in 1:1:10 H3PO4/H2O2-/H2O solution and in 1:1 HCI/H2O solution, then annealed to 580°C in the vacuum chamber. Hydrogen adsorption was carried out at -90 and 45°C. At both temperatures, a monolayer forms giving rise to infrared bands for arsenic hydride and gallium hydride at 2105 and 1860 cm−1, respectively. The arsenic hydride vibration is polarized parallel to the surface, whereas the gallium hydride vibration is polarized normal to the surface. By monitoring the changes in the intensity of the infrared absorption bands with time during exposure to H atoms and during heating, the kinetics of hydrogen adsorption and desorption can be measured. At -90°C, the H atom sticking probability follows the Langmuir model, S/So = (1-θH). Upon heating the crystal, the arsenic hydride rapidly decomposes near 120°C, while the gallium hydride slowly decomposes between 150 and 400°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chabal, Y.J., Surf. Sci. Rep. 8, 211 (1988).CrossRefGoogle Scholar
2. Joseph, D.M., Hicks, R.F., Sadwick, L.P., and Wang, K.L., Surf. Sci. 204, L721 (1988).CrossRefGoogle Scholar
3. Burrows, V.A., Chabal, Y.J., Higashi, G.S., Raghavachari, K., and Christman, S.B., Appl. Phys. Lett. 53, 998 (1988).CrossRefGoogle Scholar
4. Barton, J.J., Goddard, W.A., and McGill, T.C., J. Vac. Sci. Technol. 16, 1178 (1979).Google Scholar
5. Swarts, C.A., Goddard, W.A., and McGill, T.C., J. Vac. Sci. Technol. 17, 982 (1980).CrossRefGoogle Scholar
6. Reep, D.H. and Ghandhi, S.K., J. Electrochem. Soc. 130, 675 (1983).Google Scholar
7. Dapkus, P.D., DenBaars, S.P., Chen, Q., Jeong, W.G., and Maa, B.Y., Prog. Crystal Growth 19, 137 (1989).Google Scholar
8. Tirtowidjojo, M. and Pollard, R., Mat. Res. Soc. Symp. Proc. 131, 109 (1989).CrossRefGoogle Scholar
9. Mountziaris, T.J. and Jensen, K.F., Mat. Res. Soc. Symp. Proc. 131, 117 (1989).CrossRefGoogle Scholar
10. Stringfellow, G.B., Orqanometallic Vapor-Phase Epitaxy, Theory and Practice, (Academic Press, New York, 1989).Google Scholar
11. Larsen, C.A., Li, S.H., Buchan, N.I., Stringfellow, G.B., and Brown, D.W., J. Crytal Growth 102, 126 (1990).Google Scholar
12. Creighton, J.R., Surf. Sci. 234, 287 (1990).Google Scholar
13. Memmert, U. and Yu, M.L., Appl. Phys. Lett. 56, 1883 (1990).Google Scholar
14. Tamaru, K., J. Phys. Chem. 59, 777 (1955).CrossRefGoogle Scholar
15. Creighton, J.R., J. Vac. Sci. Technol. A 8, 3984 (1990).Google Scholar
16. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E., Handbook of X-ray Photoelectron Spectroscopy, (Perkin-Elmer Corp., Eden Prairie, MN, 1979), p. 188.Google Scholar
17. Lu, Z.H., Lagarde, C., Sacher, E., Currie, J.F., and Yelon, A., J. Vac. Sci. Technol. A 7, 646 (1989).Google Scholar
18. Bringans, R.D. and Bachrach, R.Z., Solid State Commun. 45, 83 (1983).Google Scholar
19. DuBois, L.H. and Schwartz, G.P., Phys. Rev. B 26, 794 (1982).Google Scholar
20. Luth, H. and Matz, R., Phys. Rev. Lett. 46, 1652 (1981).Google Scholar