Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T19:55:39.801Z Has data issue: false hasContentIssue false

A Study of Grain Boundaries in High TC Superconducting Yba2Cu3O7-x Thin Films Using High Resolution Analytical Stem

Published online by Cambridge University Press:  28 February 2011

D. H. Shin
Affiliation:
School of Applied And Engineering Physics, Cornell University Ithaca, New York 14853
J. Silcox
Affiliation:
School of Applied And Engineering Physics, Cornell University Ithaca, New York 14853
S. E. Russek
Affiliation:
School of Applied And Engineering Physics, Cornell University Ithaca, New York 14853
D. K. Lathrop
Affiliation:
School of Applied And Engineering Physics, Cornell University Ithaca, New York 14853
R. A. Buhrman
Affiliation:
School of Applied And Engineering Physics, Cornell University Ithaca, New York 14853
Get access

Abstract

Grain boundaries in thin films of high Tc YBa2Cu3O7-x superconductors have been investigated with high resolution scanning transmission electron microscope (STEM) imaging and nanoprobe energy dispersive x-ray (EDX) analysis. Atomic resolution images indicate that the grain boundaries are mostly clean, i.e., free of a boundary layer of different phase or of segregation, and are often coherent. EDX microanalysis with a 10 Å spatial resolution also indicates no composition deviation at the grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R., and Gambino, R. J., Phys. Rev. Lett., 58, 2684 (1987)Google Scholar
2 Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988)Google Scholar
3 Hylton, T. L., Kapitulnik, A., Beasley, M. R., Carini, J. P., Drabeck, L., and Grüner, G., Appl. Phys. Lett., 53, 1343 (1988)Google Scholar
4 Ekin, J. W., Braginski, A. I., Panson, A. J., Janocko, M. A., Capone II, D. W., Zaluzec, N. J., Flandermeyer, B., de Lima, O. F., Hong, M., Kwo, J., and Liou, S. H., J. Appl. Phys., 62, 4821 (1987)Google Scholar
5 Lathrop, D. K., Russek, S. E., and Buhrman, R. A., Appl. Phys. Lett., 51, 1554 (1987)Google Scholar
6 Lathrop, D. K.. Russek, S. E., Tanabe, K, and Buhrman, R. A., IEEE Trans. Mgn. MAG-25, (1989)Google Scholar
7 Moeckley, B., Lathrop, D. K., Redinbo, G., Russek, S. E., and Buhrman, R. A., presented at the 1989 MRS Fall Meeting, Boston, MA 1989.Google Scholar
8 Shin, D. H., Kirkland, E. J., and Silcox, J., Appl. Phys. Lett., In press. (1989)Google Scholar
9 Xu, P., Kirkland, E. J., Silcox, J., and Keyse, R., To be published.Google Scholar
10 Chen, C. H., Kwo, J., and Hong, M., Appl. Phys. Lett., 52, 841 (1988)Google Scholar
11 Russek, S. E., Lathrop, D. K., Moeckley, B., and Buhrman, R. A. (private communications) .Google Scholar
12 Clemens, B. M., Nieh, C. W., Kittl, J. A., and Johnson, W. L., Josefowicz, J. Y., and Hunter, A. T., Appl. Phys. Lett., 53, 1871 (1988)Google Scholar