Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:42:31.057Z Has data issue: false hasContentIssue false

Study of Germanium Epitaxial Recrystallization on Bulk-Si Substrates

Published online by Cambridge University Press:  01 February 2011

Byron Ho
Affiliation:
[email protected], University of California at Berkeley, EECS, Berkeley, California, United States
Reinaldo Vega
Affiliation:
[email protected], University of California at Berkeley, EECS, Berkeley, California, United States
Tsu-Jae King-Liu
Affiliation:
[email protected], University of California at Berkeley, EECS, Berkeley, California, United States
Get access

Abstract

LPCVD Ge films are deposited onto bulk Si substrates and subjected to either a rapid thermal anneal (RTA) or furnace anneal (FA) at a temperature that is higher than the melting point of Ge in an attempt to induce epitaxial recrystallization. Spiking into the Si and voids in the Ge film are observed after the anneal. This is attributed to defect-assisted Ge diffusion into the Si substrate caused by strain at the Ge-Si interface. Simple diffusion theory using published diffusivity values predicts diffusion depths similar to the spiking depths observed by scanning electron microscopy and transmission electron microscopy. Approaches to reduce the strain at the interface are explored. It is found that the quasi-equilibrium nature of FA reduces spiking and that there is an area dependence. Grazing-incidence x-ray diffraction analysis suggests that this technique for epitaxial recrystallization does not result in single-crystalline Ge.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Thompson, S.E. Armstrong, M. Auth, C. Cea, S. Chau, R. Glass, G. Hoffman, T. Klaus, J. Ma, Z., McIntyre, B. Murthy, A. Obradovic, B. Shifren, L. Sivakumar, S. Tyagi, S. Ghani, T. Mistry, K., Bhor, M. and El-Mansy, Y. IEEE Elec. Dev. Lett. 25, 191 (2004).Google Scholar
2 Hellings, G. Mitard, J. Eneman, G. Jaeger, B. De, Brunco, D.P. Shamiryan, D. Vandeweyer, T., Meuris, M. Heyns, M.M. Meyer, K. De, IEEE Elec. Dev. Lett. 30, 88 (2009).Google Scholar
3 Nicholas, G. Jaeger, B. De, Brunco, D.P. Zimmerman, P. Eneman, G. Martens, K. Meuris, M. and Heyns, M.M. IEEE Trans. Elec. Dev. 54, 9 (2007).Google Scholar
4 Romanjek, K. Hutin, L. Royer, C. Le, Pouydebasque, A. Jaud, M.-A. Tabone, C. Augendre, E. Sanchez, L. Hartmann, J.M. Grampiex, H. Mazzochi, V. Soliveres, S. Truche, R., Clavelier, L. Scheiblin, P. Garros, X. Reimbold, G. Vinet, M. Boulanger, F. and Deleonibus, S. Solid State Elec., 53, 723 (2009).Google Scholar
5 Mack, T. Hackbarth, T. Seiler, U. Herzog, H.J. Kanel, H. von, Kummer, M. Ramm, J. and Sauer, R., Mat. Sci. Eng. B 89, 368 (2002).Google Scholar
6 Lee, M.L. Leitz, C.W. Cheng, Z. Pitera, A.J. Langdo, T. Currie, M.T. Taraschi, G. Fitzgerald, E.A., and Antoniadis, D.A. Appl. Phys. Lett., 79, 20 (2001).Google Scholar
7 Sugii, N. Yamaguchi, S. and Washio, K. J. Vac. Sci. Technol. B 20, 1891 (2002).Google Scholar
8 Liu, Y. Deal, M.D. Plummer, J.D. Appl. Phys. Lett., 84, 2563 (2004).Google Scholar
9 Liow, T.Y. Tan, K.M. Lee, R.T.P. Zhu, M. Tan, B.L.H. Samudra, G.S. Balasubramanian, N. and Yeo, Y.C. Symp. VLSI Tech., (2008).Google Scholar
10 Portavoce, A. Chai, G. Chow, L. and Bernardini, J. J. Appl. Phys., 104, 104910 (2008).Google Scholar
11 Sentaurus Process User Guide, Version C-2009.06 (Synopsys Inc., 2009)Google Scholar