Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:01:19.373Z Has data issue: false hasContentIssue false

Study of doping in GaAs layers by local probe techniques: micro-Raman, micro-photoluminescence and cathodoluminescence

Published online by Cambridge University Press:  11 February 2011

Angel M. Ardila
Affiliation:
Depto. de Física, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad, Universitaria, Santa Fede Bogotá, Colombia Física de la Materia Condensada E.T.S.I.I., Universidad de Valladolid, Valladolid, 47011, Spain
O. Martínez
Affiliation:
Física de la Materia Condensada E.T.S.I.I., Universidad de Valladolid, Valladolid, 47011, Spain
M. Avella
Affiliation:
Física de la Materia Condensada E.T.S.I.I., Universidad de Valladolid, Valladolid, 47011, Spain
Luis F. Sanz
Affiliation:
Física de la Materia Condensada E.T.S.I.I., Universidad de Valladolid, Valladolid, 47011, Spain
J. Jiménez
Affiliation:
Física de la Materia Condensada E.T.S.I.I., Universidad de Valladolid, Valladolid, 47011, Spain
B. Gérard
Affiliation:
THALES, Corporate Research Laboratory, 91404 Orsay Cedex, France
J. Napierala
Affiliation:
LASMEA UMR CNRS 6602, Université Blaise Pascal, Les Cézeaux, 63177 Aubiére Cedex, France
E. Gil-Lafon
Affiliation:
LASMEA UMR CNRS 6602, Université Blaise Pascal, Les Cézeaux, 63177 Aubiére Cedex, France
Get access

Abstract

The free carrier concentration of GaAs layers grown by MOCVD either on GaAs or Si substrates, by the conformal method in the last case, was obtained from the micro-Raman spectra using the hydrodynamic approach to fit the LO phonon-plasmon coupled Raman modes. The results on homoepitaxial layers were used as a calibration of the fitting method. The measurements in the selectively doped conformal layers were then compared with data obtained by micro-photoluminescence and cathodoluminescence spectroscopy and imaging. The doping data are compared with those deduced from the room temperature micro-photoluminescence and cathodolumiescence spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hon, D. T. and Faust, W. L., Appl. Phys. 1, 241 (1973).Google Scholar
Abstreiter, G., Cardona, M., and Pinczuk, A., in Light Scattering in Solids IV, edited by Cardona, M. and Gunterodt, G. (Springer, New York, 1984).Google Scholar
Hubler, G. K., Malmberg, P. R., Waddell, C. N., Spitzer, W. G., and Fredrickson, J. E., Radiat. Eff. 60, 35 (1982).Google Scholar
Lee, N. Y., Lee, K. J., Lee, C., Kim, J. E., Park, H. Y., Kwak, D. H., Lee, H. C., and Lim, H., J. Appl. Phys. 78, 3367 (1995).Google Scholar
5. Ibáñez, J., Cuscó, R., and Artús, L., Phys. Status Solidi (b), 223, 715 (2001).Google Scholar
6. Pribat, D., Gerard, B., Dupuy, M., and Legagneux, P., Appl. Phys. Lett. 60, 2144 (1992).Google Scholar
7. Burstein, E., Phys Rev. 83, 632 (1954);Google Scholar
Moss, T. S., Proc. Phys. Soc. 123, 1232 (1954).Google Scholar
8. Ardila, A. M., Martínez, O., Avella, M., Jiménez, J., Gerard, B. and Gil-Lafon, E., J. Mater. Res. 17, 1341 (2002).Google Scholar
9. Ardila, A. M., Martínez, O., Avella, M., Jiménez, J., Gerard, B., Napierala, J., and Gil-Lafon, E., Appl. Phys. Lett. 79, 1270 (2001).Google Scholar
10. Borghs, G., Bhattacharya, K., Deneffe, K., Van Mieghem, P., and Mertens, R., J. Appl. Phys. 66, 4381 (1989).Google Scholar
11. Ardila, A. M., Martínez, O., Avella, M., Jiménez, J., Gerard, B., Napierala, J., and Gil-Lafon, E., J. Appl. Phys. 91, 5045 (2002).Google Scholar