No CrossRef data available.
Article contents
Study of Diamond Nucleation on Silicon Using Direct Negative Carbon Ion Beam Source
Published online by Cambridge University Press: 21 February 2011
Abstract
The initial nucleation stages of sp3 bonded amorphous diamond on silicon substrates have been investigated. The energy of the incident carbon ions/atoms is understood as a key parameter for the vapor phase formation of amorphous diamond like carbon coatings. SKION's solid state carbon ion source is used for this study. The ion source is UHV compatible and capable of producing a controlled energy ion beam in the energy range of 5-300 eV. In the initial stage of the deposition, carbon is found to be deposited as a silicon carbide up to a thickness of about 180Á at room temperature. Silicon is diffused to the surface and forms SiC. As the energy of the ion beam increases, the formation of silicon carbide becomes apparent. Further carbon ion bombardment then leads to the formation of an sp3 bonded amorphous diamond film. Post-annealing above 900°C leads to the formation of crystalline silicon resulting in a Si-rich SiC surface due to silicon out-diffusion.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996