Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:43:00.982Z Has data issue: false hasContentIssue false

Study of Afterglow and Thermoluminescence Properties of Synthetic Opal-C Nanoparticles for In Vivo Dosimetry Applications

Published online by Cambridge University Press:  09 April 2013

Marlen Hernández-Ortiz
Affiliation:
Programa de Posgrado en Ciencia de Materiales del, Universidad de Sonora, A. P. 130, Hermosillo, Sonora 83000 México.
Laura S. Acosta-Torres
Affiliation:
Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Unidad León, Boulevard UNAM No. 2011 Predio el Saucillo y el Potrero C.P. 36969. León Guanajuato, México.
Rodolfo Bernal
Affiliation:
Departamento de Investigación en Física, Universidad de Sonora, A. P. 5-088, Hermosillo, Sonora 83190 México.
Catalina Cruz-Vázquez
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, A. P. 130, Hermosillo, Sonora 83000 México.
Víctor M. Castaño
Affiliation:
Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230 México.
Get access

Abstract

Opal particles, with diameter ca. 80 nm, were synthesized by the Stöber method. Samples were exposed to 100 Gy of beta particle irradiation and its thermoluminescence (TL) emission was recorded. TL response presents good reproducibility, standard deviation 1 %. The glow curve displays two TL peaks 86 and 400 °C and the afterglow (AG) phenomenon is observed immediately after irradiation (< 150°C). The synthetic opal-C exhibits a linear dependence of AG response as function of dose from 0.25 to 8 Gy. This dose range is of interest for personal and clinical dosimetry. Moreover, a previous study indicates that cytotoxic and genotoxic effects caused by opal nanoparticles, did not induce unrepairable DNA damage neither a cellular harm. Therefore, our results show synthetic opal-C is a material useful for in vivo radiation dosimetry.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, R. and McKeever, S. W. S., Theory of Thermoluminescence and Related Phenomena, (World Scientific, Singapore, 1997) p. 2.□CrossRefGoogle Scholar
Furetta, C. and Weng, P. S., Operational Thermoluminescence Dosimetry, (World Scientific, Singapore, 1998) p. 212.□CrossRefGoogle Scholar
Rah, J. E., Hwang, U. J., Jeong, H., Lee, S. Y., Lee, D. H., Shin, D. H., Yoon, M., Lee, S. B., Lee, R. and Park, S. Y., Radiat. Meas. 46, 4045 (2011)CrossRefGoogle Scholar
Pérez Salas, R., Meléndrez, R., Aceves, R. and Barboza-Flores, M., Appl. Phys. Lett. 63, 3017(1993).CrossRefGoogle Scholar
Brito, H. F., Hölsä, J., Laamanen, T., Lastusaari, M., Malkamäki, M. and Rodrigues, L. C. V., Optical Materials Express 2, 371 (2012); H. Jungner, ibid., 287; J. Hassinen, J. Niittykoski and P. Novák, ibid., J. Therm. Anal. Calorim. 105, 657(2011).CrossRefGoogle Scholar
Meakins, R. L., Clark, G. J. and Dickson, B. L., American Mineralogist 63, 737 (1978).Google Scholar
Hatipoglu, M., J. Afr. Earth Sci. 54, 1 (2009).CrossRefGoogle Scholar
Boyko, V., Dovbeshko, G., Fesenko, O., Gorelik, V., Moiseyenko, V., Romanyuk, V., Shvets, T., and Vodolazkyy, P., Mol. Cryst. Liq. Cryst. 535, 3041 (2011).CrossRefGoogle Scholar
Voshchinskii, Y. A. and Gorelik, V. S., Inorg. Mater. 48, 150(2012).CrossRefGoogle Scholar
Hernández-Ortiz, M., Acosta-Torres, L. S., Hernández-Padrón, G., Mendieta, A. I., Bernal, R., Cruz-Vázquez, C. and Castaño, V. M., BioMed. Eng. OnLine 11, 78 (2012).CrossRefGoogle Scholar
Hernández-Ortiz, M., Hernández-Padrón, G., Bernal, R., Cruz-Vázquez, C., Vega-González, M., Castaño, V. M., Digest J. Nanomater. Biostruct. 7, 1297 (2012).Google Scholar
Chen, R. and Leung, P. L., Radiat. Prot. Dosim. 84, 4346 (1999).CrossRefGoogle Scholar
Mckeever, S.W.S., Thermoluminescence of solids, (Cambridge University Press, Cambrige, 1988) p. 47.Google Scholar
Koul, D. K., Pramana – J. Phys. 71, 1209 (2008).CrossRefGoogle Scholar
Correchera, V., García-Guinea, J., Bustillo, M. A. and García, R., Radiat. Eff. Defect Solids 164, 59 (2009).CrossRefGoogle Scholar