Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T16:29:49.406Z Has data issue: false hasContentIssue false

Study and tailoring of composite and nanocomposite materials for lithium battery electrode application

Published online by Cambridge University Press:  01 February 2011

Vincent Gaudefroy
Affiliation:
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, B.P. 32229, 44322 Nantes Cedex 3, France
Delphine Guy
Affiliation:
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, B.P. 32229, 44322 Nantes Cedex 3, France
Bernard Lestriez
Affiliation:
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, B.P. 32229, 44322 Nantes Cedex 3, France
Renaud Bouchet
Affiliation:
Laboratoire Madirel, Université de Marseille, Centre St Jérome, Av. Escadrille Normandie Niemen, 13397 Marseille cedex 20
Dominique Guyomard
Affiliation:
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, B.P. 32229, 44322 Nantes Cedex 3, France
Get access

Abstract

To increase electrode cycling performance in batteries, most researchers generally focus their work on the active material optimisation. Here we show that the polymeric binder of the composite electrode may have an important role on the electrode performance. We describe a new tailored polymeric binder combination with controlled polymer-filler (carbon black) interactions that allows the preparation of new and more efficient electrode architecture. Using this polymeric binder, composite electrodes based on Li1.2V3O8 display a room-temperature cycling capacity of 280 mAh/g (C/5 rate, 3.3–2 V) instead of 150 mAh/g using a standard-type (PVdF-HFP binder) composite electrode. We have coupled SEM observations, galvanostatic cycling and electronic conductivity measurements in order to define and understand the impact of the microstructure of the composite electrode on its electrochemical performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Armand, M., Solid State ionics, 69, 309 (1994).Google Scholar
2. Guy, D., Lestriez, B. and Guyomard, D., Adv. Mater., 16, 553 (2004).Google Scholar
3. Gonzalez-Garcia, C.M., Gonzalez-Martin, M.L., Gomez-Serrano, V., Bruque, J.M., Labajo-Broncano, L., Langmuir, 16, 3950 (2000).Google Scholar
4. Park, S-J., Kim, H-C., Kim, H-Y., J. Coll. Interf. Sci., 255, 145 (2002).Google Scholar
5. Kohls, D.J., Beaucage, G., Curr. Op. Sol. State Mater. Sci. 6, 183 (2002).Google Scholar
6. Jouanneau, S., Le Gal La Salle, A., Verbaere, A., Guyomard, D., Deschamps, M. and Lascaud, S., Solid State Ionics, in press.Google Scholar
7. Balberg, I., Carbon 40, 139143 (2002).Google Scholar
8. Guy, D., Lestriez, B., Bouchet, R., Gaudefroy, V., Guyomard, D., Ionics, 10 (2004).Google Scholar
9. Guy, D., Lestriez, B., Bouchet, R., Gaudefroy, V. and Guyomard, D., Electrochem. Solid-State Lett. 7 (1) (2005).Google Scholar