Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:42:26.418Z Has data issue: false hasContentIssue false

Studies of Silicon Oxynitride Films Produced by Radio-Frequency Plasma Assisted Electron Cyclotron Resonance

Published online by Cambridge University Press:  17 March 2011

J.D. Brewer
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
A. Raveh
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
E.A. Irene
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
Get access

Abstract

Single crystal silicon wafers were treated by direct oxynitridation using electron cyclotron resonance (ECR) and radio-frequency (rf) plasma with separate N2 and O2 gas sources. Fabricated layers were characterized by ex situ spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES), and atomic force microscopy (AFM).

The thickness and nitride/oxide ratio of silicon oxynitride layers were found to be dependent on the main process variables, namely gas pressure, bias voltage, and N2/O2 flow rate ratio. It was also observed that ECR/rf plasma is more efficient for the formation of layers with higher nitrogen content at relatively low pressure (≤ 200 mTorr) and bias voltage (−40 V) when compared to that of rf plasma alone. SE modeling provided good fitting to experimental data, while AES and AFM analyses supported SE results. The effects of fabrication conditions on the thickness and composition of the layers will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsai, H.-H., Wu, L.-C., Wu, C.-Y., and Hu, C., IEEE Electron Device Lett. EDL-8 (4), 143 (1987).Google Scholar
2. Hattangady, S.V., Niimi, H., and Lucovsky, G., J. Vac. Sci. Technol. A 14, 3017 (1996).Google Scholar
3. Arakawa, T., Hayshi, T., Ohno, M., Matsumoto, R., Uchiyama, A., and Fukuda, H., Jpn. J. Appl. Phys. 34, 1007 (1995).Google Scholar
4. Wristers, D., Han, L.K., Chen, T., Wang, H.H., Kwong, D.L., Allen, M., and Fulford, J., Appl. Phys. Lett. 68, 2094 (1996).Google Scholar
5. Raveh, A., Brewer, J., and Irene, E.A., J. Vac. Sci. Technol. A 19, 9 (2001).Google Scholar
6. Raveh, A., Brewer, J., and Irene, E.A., J. Vac. Sci. Technol. A 19, 17 (2001).Google Scholar
7. Kern, W. and Puotinen, D.A., RCA Rev. 31, 187 (1970).Google Scholar
8. Yasuda, Y., Zaima, S., Kaida, T., and Koide, Y., Appl. Surf. Sci. 41/42, 429 (1989).Google Scholar
9. Vinkier, C. and DeJaegere, S., J. Electrochem. Soc. 137, 628 (1990).Google Scholar
10. Andrews, J.W., Hu, Y.Z., and Irene, E.A., Proc. SPIE 1188, 162 (1989).Google Scholar
11. Bruggeman, D.A.G., Ann. Phys. (Leipzing) 24, 636 (1935).Google Scholar
12. Callard, S., Gagnaire, A., and Joseph, J., Thin Solid Films 313–314, 384 (1998).Google Scholar
13. Perriere, J., Siejka, J., Rmili, N., Laurent, A., Straboni, A., and Vuillermoz, B., J. Appl. Phys. 59, 2752 (1986).Google Scholar
14. Coburn, J.W., in Diamond and Diamond-Like Films and Coatings, NATO-ASI Series B: Physics, edited by Clausing, R.E., Horton, L.L., Angus, J.C., and Koidl, P., Vol.266, p. 73. New York, Plenum Press, 1991.Google Scholar
15. Raveh, A., Mater. Sci. and Eng. A 167, 155 (1993).Google Scholar
16. Shibutani, T. and Matsumoto, O., J. Less-Common Met. 120, 93 (1986).Google Scholar
17. Mizokuro, T., Yoneda, K., Todokoro, Y., and Kobayashi, H., J. Appl. Phys. 85, 2921 (1999).Google Scholar
18. Gusev, E.P., Lu, H.C., Gustafsson, T., Garfunkel, E., Green, M.L., and Brasen, D., J. Appl. Phys. 82, 896 (1997).Google Scholar
19. Thomson, J.B., Proc. R. Soc. London Ser. A 262, 503 (1961).Google Scholar
20. Bell, A.T. and Kwong, K., AlChE J. 18, 990 (1972).Google Scholar
21. Singhvi, S. and Takoudis, C.G., J. Appl. Phys. 82, 442 (1997).Google Scholar
22. Okada, Y., Tobin, P.J., Lakhotia, V., Feil, W.A., Ajuria, S.A., and Hegde, R.I., J. Appl. Phys. 75, 1811 (1994).Google Scholar