Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:39:17.646Z Has data issue: false hasContentIssue false

Studies of Interface Formation and Its Influence on Optical Properties of GaInAs/InP QW Structures

Published online by Cambridge University Press:  25 February 2011

W. Seifert
Affiliation:
Department of Solid State Physics, Lund University, Box 118, S–221 00 Lund, Sweden
X. Liu
Affiliation:
now: Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
L. Samuelson
Affiliation:
Department of Solid State Physics, Lund University, Box 118, S–221 00 Lund, Sweden
Get access

Abstract

It is a well-known phenomenon that the luminescence energies of nominally n monolayer (1 ML = 0.239 nm) thick QWs of GalnAs in InP are shifted to longer wavelengths in comparison to calculated values. The reason is seen in the formation of (Ga)InAs(P)-interfaces, one or a few ML thick, which contribute to the effective potential of the QW.Based on a comparison of MBE and MOVPE and on properties of QW structures grown by MOVPE under different conditions we conclude that high AsH3 pressures and low growth temperatures favour the formation of arsenic multilayers on the surface, which act as the main arsenic source for the formation of graded InAsxP1−x interface layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wang, T. Y. and Stringfellow, G. B., J. Appl. Phys. 67, 344 (1990)Google Scholar
2 Seifert, W., Fornell, J.-O., Ledebo, L., Pistol, M.-E. and Samuelson, L., Appl. Phys. Lett. 56, 1128 (1990)Google Scholar
3 Schwedler, R., Reinhardt, F., Griützmacher, D. and Wolter, K., J. Cryst. Growth, 107, 531 (1991)Google Scholar
4 Landgren, G., ojala, P. and Ekström, O., J. Cryst. Growth, 107, 573 (1991)Google Scholar
5 Nilsson, S., unpublished resultsGoogle Scholar
6 Wang, T. Y., Reihlen, E. H., Jen, H. R. and Stringfellow, G. B., J. Appl. Phys. 66, 5554 (1989)Google Scholar
7 Grützmacher, D., Hergeth,. Reinhardt, J., Wolter, K. and Balk, P., J. Electron. Mater. 19, 471 (1990)Google Scholar
8 Streubel, K., Härle, V., Scholz, F., Bode, M., Grundmann, M., J. Appl. Phys. 71, 3300 (1992)Google Scholar
9 Cureton, C. G., Thrush, E. J., Briggs, A. T. R., J. Cryst. Growth, 107, 549 (1991)Google Scholar
10 Kamiya, I., Tanaka, H., Aspnes, D. E., Florez, L. T., Colas, E., Harbison, J. P. and Bhat, R., Appl. Phys. Lett. 60, 1238 (1992)Google Scholar
11 Lamelas, F. J., Fuoss, P. H., Imperatori, P., Kisker, D. W., Stephenson, G. B., Brennan, S., Appl. Phys. Lett. 60, 2610 (1992)Google Scholar
12 Seifert, W., Deppert, K., Fornell, J.-O., Liu, X., Nilsson, S., Pistol, M.-E. and Samuelson, L., J. Crystal Growth, in printGoogle Scholar