Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T13:09:38.869Z Has data issue: false hasContentIssue false

Studies of III-Nitride Superlattice Structures Implanted with Lanthanide Ions

Published online by Cambridge University Press:  01 February 2011

Mohammad Ahmad Ebdah
Affiliation:
[email protected], Ohio University, Department of Physics and astronomy, athens, Ohio, United States
Wojciech M Jadwisienczak
Affiliation:
[email protected], Ohio University, of Electrical Engineering and Computer Science, athens, Ohio, United States
Martin E Kordesch
Affiliation:
[email protected], Ohio University, Physics, Athens, Ohio, United States
Saleem Ramadan
Affiliation:
[email protected], Ohio University, of Electrical Engineering and Computer Science, Athens, Ohio, United States
Hadis Morkoç
Affiliation:
[email protected], Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia, United States
A A. Anders
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Berkeley, California, United States
Get access

Abstract

Cathodoluminescence (CL) of rare earth (RE) ions implanted AlN/GaN superlattice (SL) structures grown by chemical vapor deposition (CVD) technique on GaN/(0001) sapphire substrate was measured at 10 K and 300 K. Implantation of terbium and thulium in SLs was done at 150 keV with a dose of up to 1×1015 cm-2 at 300 K. Samples were given post implantation isochronal thermal treatment at 900 °C in nitrogen ambient. The interface quality between the SL layers before and after implantation as well as after thermal annealing treatment has been investigated by X-ray diffraction (XRD). The characteristic satellite peaks of the SLs were measured for the (0002) reflection in the symmetric Bragg geometry for the reference, RE-implanted, and annealed SLs. Furthermore, the luminescence intensity of a RE3+ ion doped AlN/GaN SL was compared with the one from RE-implanted GaN epilayers. Despite the structural damage of the AlN/GaN structures, an enhancement of the characteristic emission intensities from RE3+ ions in the SLs was observed compared to emission from RE ions in epilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Steckl, A., Zavada, J., MRS Bull., 24, 33 (1999).Google Scholar
2. Lozykowski, H., Jadwisienczak, W., Brown, I., Appl. Phys. Lett. 74, 1129 (1999).Google Scholar
3. Steckl, A., Park, J., Zavada, J., Materials Today 10, 20 (2007).Google Scholar
4. Dahal, R., Ugolini, C., Lin, J., Jiang, H., Zavada, J., Appl. Phys. Lett. 93, 033502 (2008).Google Scholar
5. Gusev, O., Prineas, J., Lindmark, E., Bresler, M., Khitrova, G., Gibbs, H., Yassievich, I., Zakharchenya, B., Masterov, V., J. Appl. Phys. 82, 1815 (1997).Google Scholar
6. Masterov, V., Gerchikov, L., Semiconductors 33, 616 (1999).Google Scholar
7. Zheng, T., Li., Z., Superlattice. Microst. 37, 227 (2005).Google Scholar
8. Koizumi, A., Moriya, H., Watanabe, N., Nonogaki, Y., Fujiwara, Y., Takeda, Y., Appl. Phys. Lett. 80, 1559 (2002).Google Scholar
9. Tanaka, M., Yamada, H., Maruyama, T., Akimoto, K., Phys. Rev. B. 67, 045305–1 (2003).Google Scholar
10. Lin, T., Sheu, Y., Chen, Y., Lin, J., Jiang, H., Solid. State Commun. 131, 389 (2004).Google Scholar
11. Paskov, P., Bergman, J., Darakchieva, V., Paskova, T., phys. stat. sol. (c) 2, 2345 (2005).Google Scholar
12. Tchernycheva, M., Nevou, L., Doyennette, L., Julie, F., Guilot, F., Monroy, E., Remmele, T., Albrecht, M., Appl. Phys. Lett. 88, 153113 (2006).Google Scholar
13. Morkoc, H., Handbook of Nitride Semiconductors and Devices: vol.1 & 2, John Wiley & Sons (2008).Google Scholar
14. Lozykowski, H., Jadwisienczak, W., Han, J., Brown, I., Appl. Phys. Lett. 77, 767 (2000).Google Scholar
15. Sobolev, N., et al., Physica B. 340–342, 1108 (2003).Google Scholar
16. Lozykowski, H., Jadwisienczak, W., Brown, I., Appl. Phys. Lett. 74, 1129 (1999).Google Scholar
17. Lozykowski, H., Jadwisienczak, W., Brown, I., Appl. Phys. Lett. 76, 861, (2000).Google Scholar
18. Jadwisienczak, W., Lozykowski, H., Berishev, I., Bensaoula, A., Brown, I., J. Appl. Phys. 89, 4384 (2001).Google Scholar
19. Li, W., Bergman, P., Ivanov, I., Ni, W., Amano, H., Akasa, I., Appl. Phys. Lett. 69, 22 (1996).Google Scholar
20. Jin, C., Zhang, B., Ling, Z., Wang, J., Hou, X., Segawa, Y., Wang, X., J. Appl. Phys. 81, 8, (1997).Google Scholar
21. Kucheyev, O., Williams, J. S., Pearton, S. J., Mat. Sci. Eng. R, 33, 51 (2001).Google Scholar
22. MacMillan, M. F., Clemen, L.L., Devaty, R. P., Choyke, W. J., Khan, M. A., Kuznia, J. N., Krishnankutty, S., J. Appl. Phys. 80, 2378, (1996).Google Scholar
23. Gruber, J., Vetter, U.. Hofsass, H., Zandi, B., Reid, M., Phys. Rev. B. 70, 245108 (2004).Google Scholar
24. Hommerich, U., Nyein, E., Lee, D., Steckl, A., Zavada, J., Appl. Phys. Lett. 83, 4556 (2003).Google Scholar