Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:47:36.706Z Has data issue: false hasContentIssue false

Studies of Critical Current Density Enhancement in (Cax Y1−x)Ba2Cu4O8 (1:2:4)

Published online by Cambridge University Press:  28 February 2011

P. K. Narwankar
Affiliation:
Department of Materials Science and Mineral Engineering, University of California Berkeley, CA 94720 Morris Research, Inc., 1918University Avenue, Berkeley, CA 94704
M. R. Chandrachood
Affiliation:
Department of Materials Science and Mineral Engineering, University of California Berkeley, CA 94720
M. Fendorf
Affiliation:
Department of Materials Science and Mineral Engineering, University of California Berkeley, CA 94720 Materials Science Division, Lawrence Berkeley Laboratory 1 Cyclotron Road, Berkeley, CA 94720
D. E. Morris
Affiliation:
Morris Research, Inc., 1918University Avenue, Berkeley, CA 94704
A. P. B. Sinha
Affiliation:
Department of Materials Science and Mineral Engineering, University of California Berkeley, CA 94720
R. Gronsky
Affiliation:
Department of Materials Science and Mineral Engineering, University of California Berkeley, CA 94720 National Center for Electron Microscopy, Lawrence Berkeley Laboratory 1 Cyclotron Road, Berkeley, CA 94720
Get access

Abstract

Samples with the stoichiometry (CaxY1−x)Ba2Cu4O8, x = 0, 0.1 were synthesized at P(O2) = 25 and 200 bar. High Resolution TEM images for the samples synthesized at 25 bar show a high density of planar defects as compared to almost defect free microstructure of Ca0.1Y0.9Ba2Cu4O8 synthesized at 200 bar. The intragrain critical current density of the high defect density samples is however about 100 times lower that that of Ca0.1Y0.9Ba2Cu4O8 synthesized at P(O2) = 200 bar.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Evetts, J., Physics World 3, 24 (1990).CrossRefGoogle Scholar
2 Fendorf, M., Kvam, E., and Gronsky, R., in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Narayan, J., Chu, C.W., Schneemeyer, L.F., and Christen, D.K. (Materials Research Society, Pittsburgh, 1990), MRS Symp. Proc. 169, 789.Google Scholar
3 Fendorf, M., Burmester, C.P., Wille, L. T., and Gronsky, R., Appl. Phys. Lett. 57, 2481(1990).CrossRefGoogle Scholar
4 Jin, S., Tiefel, T.H., Nakahara, S., Graebner, J.E., O'Brien, H.M., Fastnacht, R.A., and Kammlot, G.W., Appl. Phys. Lett. 56, 1287 (1990).Google Scholar
5 Miyatake, T., Gotoh, S., Koshizuka, N., Tanaka, S., Nature 341, 41 (1989)Google Scholar
6 Morris, D. E., Narwankar, P., Sinha, A. P. B., Takano, K., Fayn, B., Shum, V. T., Phys. Rev. B 41, 4118 (1990)Google Scholar
7 Kilaas, R., in: Proceedings of the 45th Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G. W. (San Francisco Press, Inc., San Francisco, 1987).Google Scholar
8 Narwankar, P. K., Chandrachood, M. R., Morris, D. E. and Sinha, A. P. B., App. Phys. Lett. 58, 651 (1991)CrossRefGoogle Scholar
9 Morris, D. E., Chandrachood, M. R., Sinha, A. P. B., Physica C 175, 156164 (1991)Google Scholar
10 Senoussi, S., Oussena, M., Hadjoudj, S., J. Appl. Phys. 63, 4176 (1988)CrossRefGoogle Scholar
11 Bean, C. P., Phys. Rev. Lett. 8, 250 (1962)CrossRefGoogle Scholar
12 Triscone, G., Graf, T., Junod, A., Sanchez, D., Brunner, O., Cattani, D., Muller, J., Physica C 168, 47(1990)CrossRefGoogle Scholar