Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T17:25:03.206Z Has data issue: false hasContentIssue false

Studies of Carbon Nitride Thin Films Synthesized by KrF Excimer Ablation of Graphite in Nitrogen Atmosphere

Published online by Cambridge University Press:  15 February 2011

Z.M. Ren
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
Y.F. Lu
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
W.D. Song
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
D.S.H. Chan
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
T.S. Low
Affiliation:
Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
K. Gamani
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
G. Chen
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
K. Li
Affiliation:
Department of Physics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
Get access

Abstract

Carbon nitride thin films were deposited on silicon wafers by pulsed KrF excimer laser (wavelength 248 nm, duration 23 ns) ablation of graphite in nitrogen atmosphere. Different fluences of the excimer laser and pressures of the nitrogen atmosphere were used in order to achieve a high nitrogen content in the deposited thin films. Fourier Transform Infra-red (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to identify the binding structure and the content of the nitrogen species in the deposited thin films. The highest N/C ratio 0.42 was achieved at an excimer laser fluence of 0.8 Jcm -2with a repetition rate of 10 Hz under the nitrogen pressure of PN=100 mTorr. A high content of C=N double bond instead of C-N triple bond was indicated in the deposited thin films. Ellipsometry was used to analyze the optical properties of the deposited thin films. The carbon nitride thin films have amorphous-semiconductor-like characteristics with the optical band gap Eop, as high as 0.42 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, A.Y. and Cohen, M.L., Science 245, 841 (1989).Google Scholar
2. Liu, A.Y. and Cohen, M.L., Phys. Rev. B 41, 10727 (1990).Google Scholar
3. Bousetta, A., Lu, M., Bensaoula, A. and Schultz, N., Appl. Phys. Lett. 65, 696 (1994).Google Scholar
4. Marton, D., Boyd, K.J., Al-Bayati, A.H., Todorov, S.S. and Rabalais, J.W., Phys. Rev. Lett. 73, 118 (1994).Google Scholar
5. Boyd, K.J., Marton, D., Todorov, S.S., Al-Bayati, A.H., Kulik, J., Zuhr, R.A. and Rabalais, J.W., J. Vac. Sci. Technol. A 13(4), 2110 (1995).Google Scholar
6. Han, H. and Feldman, B.J., Solid State Commun., 65, 921 (1988).Google Scholar
7. Yu, K.M., Cohen, M.L., Hailer, E.E., Hansen, W.L., Liu, A.Y. and Wu, I.C., Phys. Rev. B 49, 5034 (1994).Google Scholar
8. Sjostrom, H., Ivanov, I., Johansson, M., Huitman, L., Sundgren, J.E., Hainsworth, S.V., Page, T.F. and Wallenberg, L.R., Thin Solid Films 246, 103 (1994).Google Scholar
9. Li, D., Chung, Y.W., Wong, M.S. and Sproul, D., J. Appl. Phys. 74, 219 (1993).Google Scholar
10. Li, D., Lopez, S., Chung, Y.W., Wong, M.S. and Sproul, D., J. Vac. Sci. Technol. A 13(3), 1063 (1995).Google Scholar
11. Cutiongco, E.C., Li, D., Chung, Y.W. and Bhatia, C.S., J. Tribology-Transactions of ASME 118, 543 (1996).Google Scholar
12. Niu, C., Lu, Y.Z. and Lieber, C.M., Science 261, 334 (1993).Google Scholar
13. Ren, Z.M., Du, Y.C., Qui, Y.X., Wu, J.D., Ying, Z.F., Xiong, X.X. and Li, F.M., Phys. Rev. B 51, 5274 (1995).Google Scholar
14. Ong, C.W., Zhao, X.A., Tsang, Y.C., Choy, C.L. and Chan, P.W., J. Mater. Sci. 32, 2347 (1997).Google Scholar
15. Bulir, J., Jelinek, M., Vorlicek, V., Zemek, J. and Perina, V., Thin Soild Films, 292, 318 (1997).Google Scholar
16. Mansour, A. and Ugolini, D., Phys. Rev. B 47, 10201 (1993).Google Scholar
17. Lopez, S., Dunlop, H., Benmalek, M., Tourillon, G., Wong, M.-S. and Sproul, W.D., Surf. & Interface Analysis 25, 315 (1997).Google Scholar
18. Hammer, P., Baker, M.A., Lenardi, C. and Gissler, W., J. Vac. Sci. Technol. A 15(1), 107 (1997).Google Scholar
19. Gonzalez, P., Soto, R., Parada, E.G., Redondas, X., Chiussi, S., Serra, J., Pou, J., Leon, B. and Perez-Amor, M., Appl. Surf. Sci. 109/110, 380 (1997).Google Scholar
20. He, X.-M, Son, L., Li, W.-Z and Li, H.-D., J. Mater. Res. 12(6), 1595 (1997).Google Scholar
21. Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979), p.289.Google Scholar
22. Wang, X. and Martin, P.J., Appl. Phys. Lett. 68, 1177 (1996).Google Scholar