Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:05:01.657Z Has data issue: false hasContentIssue false

Studies in The Organic Solid State

Published online by Cambridge University Press:  16 February 2011

George M. Whitesides
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
Jonathan A. Zerkowski
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
John C. MacDonald
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
Donovan Chin
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
Get access

Abstract

This paper describes an approach to crystal engineering based on designing and analyzing hierarchical levels of crystalline architecture. The system under study consists of 1:1 co-crystals of melamines and barbituric acids that self-assemble into crystallographically infinite hydrogen-bonded tapes. The formation of structural elements can be rationalized and controlled using familiar molecular concepts such as steric repulsion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Desiraju, G.R., Crystal Engineering: The Design of Organic Solids (Elsevier, New York, 1989).Google Scholar
2. Desiraju, G.R., Organic Solid State Chemistry (Elsevier, New York, 1987).Google Scholar
3. Wright, J.D., Molecular Crystals (Cambridge University Press, Cambridge, 1987).Google Scholar
4. Zerkowski, J.A., MacDonald, J.C., Seto, C.T., Wierda, D.A., Whitesides, G.M., J. Am. Chem. Soc. accepted for publication.Google Scholar
5. Zerkowski, J.A. and Whitesides, G.M., J. Am. Chem. Soc. accepted for publication.Google Scholar
6. Zerkowski, J.A., Mathias, J.P., Whitesides, G.M., J. Am. Chem. Soc. accepted for publication.Google Scholar
7. Gavezzotti, A., J. Am. Chem. Soc. 113, 4622 (1991).Google Scholar
8. Perlstein, J., J. Am. Chem. Soc. 114, 1955 (1992).Google Scholar
9. Karfunkel, H.R. and Gdanitz, R. J., J. Comp. Chem. 12, 1171 (1992).CrossRefGoogle Scholar
10. Seto, C.T. and Whitesides, G.M., J. Am. Chem. Soc. 115, 1321 (1993).Google Scholar
11. Whitesides, G.M., Mathias, J.P., Seto, C.T., Science 254, 1312 (1991).Google Scholar
12. Etter, M. C., J. Am. Chem. Soc. 104, 1095 (1982).Google Scholar
13. Etter, M. C., Acc. Chem. Res. 23, 120 (1990).Google Scholar
14. Leiserowitz, L. and Hagler, A.T., Proc. R. Soc. London A 388, 133 (1983).Google Scholar
Leiserowitz, L., Acta Cryst. B 32, 775 (1976).Google Scholar
15. Lehn, J.-M., Angew. Chem., Int. Ed. Engl. 29, 1304 (1990);Google Scholar
Lehn, J.-M., Mascal, M., DeCian, A., Fischer, J., J. Chem. Soc. Perkin Trans. II 1992, 461.Google Scholar
16. Kimizuka, N., Kawasaki, T., Kunitake, T., J. Am. Chem. Soc. 115, 4387 (1993).Google Scholar
17. Berkovitch-Yellin, Z., van Mil, J., Addadi, L., Idelson, M., Lahav, M., Leiserowitz, L., J. Am. Chem. Soc. 107, 3111 (1985);Google Scholar
Wireko, F. C., Shimon, L.J.W., Frolow, F., Berkovitch-Yellin, Z., Lahav, M., Leiserowitz, L., J. Phys. Chem. 91, 472 (1987).Google Scholar
18. Gavish, M., Wang, J.-L., Eisenstein, M., Lahav, M., Leiserowitz, L., Science 256, 815 (1992).Google Scholar
19. Chang, Y.-L., West, M.-A., Fowler, F.W., Lauher, J.W., J. Am. Chem. Soc. 115, 5991 (1993).Google Scholar
20. Zerkowski, J.A., Seto, C.T., Whitesides, G.M., J. Am. Chem. Soc. 114, 5473 (1992).Google Scholar
21. Desiraju, G.R., Acc. Chem. Res. 24, 290 (1991).Google Scholar