Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:28:44.276Z Has data issue: false hasContentIssue false

Structures of Optical Recording Materials Ge2Sb2+x Te5 Studied by Pulsed Neutron Diffraction

Published online by Cambridge University Press:  01 February 2011

Shin-ichi Shamoto
Affiliation:
Neutron Science Research Center, Japan Atomic Energy Research Institute (JAERI), Tokai, Ibaraki, 319–1195, JP
Tomitsugu Taguchi
Affiliation:
Neutron Science Research Center, Japan Atomic Energy Research Institute (JAERI), Tokai, Ibaraki, 319–1195, JP
Toshiyuki Matsunaga
Affiliation:
Characterization Technology Group, Matsushita Technoresearch, Inc., Moriguchi, Osaka 570–8501, JP
Noboru Yamada
Affiliation:
Optical Memory Group, Matsushita Electric Industrial Co., Ltd. Moriguchi, Osaka 570–8501, JP
Kenji Ishii
Affiliation:
Synchrotron Radiation Research Center, JAERI, Mikazuki, Hyogo, 679–5148, JP
Toshiya Inami
Affiliation:
Synchrotron Radiation Research Center, JAERI, Mikazuki, Hyogo, 679–5148, JP
Get access

Abstract

Metastable cubic Ge2Sb2+x Te5 compounds, which can be prepared only as thin films, have been studied by both of neutron and x-ray powder diffraction measurements. Large displacement of germanium atoms in a crystalline cubic Ge2Sb2Te5 phase is found by PDF analysis. By adding Sb, the crystalline cubic phases coexist with two types of amorphous phases, depending on the quenching temperature. One has a first sharp diffraction peak similar to the amorphous Sb at Q ∼1.1 Å−1. Another has a new peak at Q ∼0.74 Å−1. Based on our crystal structure analyses, the composition of the new amorphous phase was estimated to be about Ge7Sb8Te10. The composition of the crystalline solid was also found to be different from the matrix, resulting in the nucleation dominated crystal growth in this system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamada, N., Matsunaga, T., J. Appl. Phys. 88–12, 7020 (2000).Google Scholar
2. Matsunaga, T. and Yamada, N., Phys. Rev. B 69, 104111 (2004).Google Scholar
3. Bordas, S., Clavaguera-Mora, M.T., Legendre, B., and Hancheng, C., Thermochim. Acta, 107, 239 (1986).Google Scholar
4. Kolobov, A., Fons, P., Frenkel, A. I., Ankudinov, A. L., Tominaga, J., and Uruga, T., Nature Materials 3, 703 (2004).Google Scholar
5. Chadi, D.J. and Chang, K.J., Phys. Rev. Lett. 61–7, 873 (1988).Google Scholar
6. Kalb, J., Spaepen, F., and Wuttig, M., Appl. Phys. Lett. 84–25, 5240 (2004).Google Scholar
7. Richter, Von H., Berckhemer, H., and Breitling, G., Z. Naturforschg. 9a, 236 (1954).Google Scholar
8. Mendoza-Galvan, A. and Gonzalez-Hernandez, J., J. Appl. Phys. 87–2, 760 (2000).Google Scholar
9. Inami, T., Fukuda, T., Mizuki, J., Nakao, H., Matsumura, T., Murakami, Y., Hirota, K., and Endoh, Y., Nucl. Instr. and Meth. A 467–468, 1081 (2001).Google Scholar
10. Peterson, P., Gutmann, P., Proffen, Th., and Billinge, S.J.L., J. Appl. Cryst. 33, 1192 (2000).Google Scholar
11. Proffen, Th. and Billinge, S.J.L., J. Appl. Cryst. 32, 572 (1999).Google Scholar
12. Larson, A. C. and von Dreele, R. B., GSAS: General Structure Analysis System, Los Alamos National Laboratory (1994),Google Scholar
Toby, B. H., EXPGUI: a graphical user interface for GSAS, J. Appl. Cryst. 34, 210221 (2001).Google Scholar
13. Aniya, M., Solid State Ionics 136–137, 10851089 (2000).Google Scholar
14. Kalb, J., Spaepen, F., Leervad Pedersen, T.P., and Wuttig, M., J. Appl. Phys. 94, 4908 (2003).Google Scholar