Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:35:35.115Z Has data issue: false hasContentIssue false

The Structures of Cellulose

Published online by Cambridge University Press:  16 February 2011

Rajai H. Atalla*
Affiliation:
USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705–2398
Get access

Abstract

This report presents an overview of studies on the structures of cellulose. After presenting a brief historical perspective, the report reviews diffractometrically based structural models and then describes recent developments based on models that are consistent with both diffractometric and spectroscopic observations. The primary impetus for development of these models was provided by Raman and 13C NMR (CP-MAS) spectral results that could not be rationalized on the basis of classical structural models, which are constrained by diffractometric data alone. The structures derived from integrating the spectral information into the data base, which constrain the models, represent relatively small but very significant departures from those structures derived on the basis of diffractometry alone. In addition to rationalizing all the structurally sensitive information, the new models provide a basis for complementary use of spectroscopic and diffractometric methods to monitor variations of the states of aggregation of celluloses with source and history. Thus, it is now possible to investigate the effects of different processing variables, which are important in industrial practice, on both secondary and tertiary levels of structure in celluloses. These levels of structure have a major influence on the material properties of commercial celluloses, yet adequate characterization of these levels has been quite elusive.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kakudo, M. and Kasai, N., X-ray Diffraction by Polymers, (Elsevier, New York, 1972, p. 285).Google Scholar
2. Arnott, S., in Fiber Diffraction Methods, ACS Symposium Series No. 141, (American Chemical Society, Washington, DC, 1980, p. 1).Google Scholar
3. Atkins, E.D.T., in Fiber Diffraction Methods, ACS Symposium Series No. 141, (American Chemical Society, Washington, DC, 1980, p. 31).Google Scholar
4. Tadokoro, H., in Fiber Diffraction Methods, ACS Symposium Series No. 141, (American Chemical Society, Washington, DC, 1980, p. 43).Google Scholar
5. Tadokoro, H., Structure of Crystalline Polymers, (Wiley, New York, 1979, p. 6).Google Scholar
6. Purves, C.B., in Cellulose and Cellulose Derivatives, Part 1, Ott, E., Spurlin, H.M., and Graffline, M.W., Eds., (Interscience, New York, 1954, p. 29).Google Scholar
7. Flory, P.J., Principles of Polymer Chemistry, (Cornell University Press, Ithaca, New York, 1953, p. 3).Google Scholar
8. Hermans, P.H., Physics and Chemistry of Cellulose Fibers, (Elsevier, New York, 1949, p. 3).Google Scholar
9. Jones, D.W., in Cellulose and Cellulose Derivatives, Part IV, Bikales, N.M. and Segal, L., Eds., (Wiley-Interscience, New York, 1971, p. 117).Google Scholar
10. Ellefsen, O. and Tonessen, B.A., in Cellulose and Cellulose Derivatives, Part IV, Bikales, N.M. and Segal, L., Eds., (Wiley-Interscience, New York, 1971, p. 151).Google Scholar
11. Tonessen, B.A. and Ellefsen, O., in Cellulose and Cellulose Derivatives, Part IV, Bikales, N.M. and Segal, L., Eds., (Wiley-Interscience, New York, 1971, p. 265).Google Scholar
12. Preston, R.D., The Physical Biology of Plant Cell Walls, (Chapman and Hall, London, 1974).Google Scholar
13. Frey-Wyssling, A., The Plant Cell Wall, (Gebruder Borntrager, Berlin, 1976).Google Scholar
14. Atalla, R.H., in The Structures of Cellulose, Atalla, R.H., Ed., ACS Symposium Series No. 340, (American Chemical Society, Washington, DC, 1987).Google Scholar
15. Howsmon, J.A. and Sisson, W.A., in Cellulose and Cellulose Derivatives, Part I, Ott, E., Spurlin, H.M., and Graffline, M.W., Eds., (Interscience, New York, 1954, p. 231).Google Scholar
16. Petitpas, T., Oberlin, M., and Mering, J.J., J. Polym. Sci. C 2, 423 (1963).Google Scholar
17. Norman, M., Text. Res. J. 33, 711 (1963).Google Scholar
18. Gardner, K.H. and Blackwell, J., Biopolymers 13, 1975 (1974).Google Scholar
19. Hebert, J.J. and Muller, L.L., J. Appl. Polym. Sci. 18, 3373 (1974).Google Scholar
20. Sarko, A. and Muggli, R., Macromol. 7, 486 (1974).Google Scholar
21. French, A.D., Roughead, W.A., and Miller, D.P., in The Structures of Cellulose, Atalla, R.H., Ed., ACS Symposium Series No. 340, (American Chemical Society, Washington, DC, 1987).Google Scholar
22. French, A.D., Carbohydrate Res. 61, 67 (1978).Google Scholar
23. Atalla, R.H., Advances in Chemistry Series 181, 55 (American Chemical Society, Washington, DC, 1979).Google Scholar
24. Atalla, R.H., in Structure, Function and Biosynthesis of Plant Cell Walls, Dugger, W.M. and Bartinicki-Garcia, S., Eds., (American Society of Plant Physiologists, Rockville, MD, 1984, p. 381).Google Scholar
25. Atalla, R.H., Appl. Polym. Symp. 28, 659 (1976).Google Scholar
26. Reese, D.A. and Skerrett, R.J., Carbohydrate Res. 7, 334 (1968).Google Scholar
27. Melberg, S. and Rasmussen, K., Carbohydrate Res. 71, 25 (1979).Google Scholar
28. Chu, S.S.C. and Jeffrey, G.A., Acta Crystallogr. B24, 830 (1968).Google Scholar
29. Ham, J.T. and Williams, D.G., Acta Crystallogr. B29, 1373 (1970).Google Scholar
30. Atalla, R.H., Gast, J.C., Sindorf, D.W., Bartuska, V.J., and Maciel, G.E., JACS 102, 3249 (1980).Google Scholar
31. Atalla, R.H., in Proceedings: International Symposium on Wood and Pulping Chemistry, SPCI Rpt. No. 38, (Stockholm, 1981, Vol.1, p. 57).Google Scholar
32. Wiley, J.H. and Atalla, R.H., in The Structures of Cellulose, Atalla, R.H., Ed., ACS Symposium Series No. 340, (American Chemical Society, Washington, DC, 1987).Google Scholar
33. Atalla, R.H. and VanderHart, D.L., in Cellulose and Wood: Proceedings: 10th Cellulose Conference, Schuerch, C., Ed., (Wiley Interscience, New York, 1989).Google Scholar
34. Earl, W.L. and VanderHart, D.L., JACS 102, 3251 (1980).Google Scholar
35. Earl, W.L. and VanderHart, D.L., Macromol. 14, 570 (1981).Google Scholar
36. Maciel, G.E., Kolodziejski, W.L., Bertran, M.S., and Dale, B.R., Macromol. 15, 686 (1982).Google Scholar
37. Fyfe, C.A., Dudley, R.L., Stephenson, P.J., Deslandes, Y., Hamer, G.K., and Marchessault, R.H., JACS 105, 2469 (1983).Google Scholar
38. Atalla, R.H. and VanderHart, D.L., Science 223, 283 (1984).Google Scholar
39. VanderHart, D.L. and Atalla, R.H., Macromol. 17, 1465 (1984).Google Scholar
40. VanderHart, D.L. and Atalla, R.H., in The Structures of Cellulose, Atalla, R.H., Ed., ACS Symposium Series No. 340, (American Chemical Society, Washington, DC, 1987).Google Scholar
41. Atalla, R.H., J. Appl. Polymer Sci. 37, 295 (1983).Google Scholar
42. Atalla, R.H., Ranua, J., and Malcolm, E.M., Tappi J. 67(2), 96 (1984).Google Scholar
43. Platt, W.N. and Atalla, R.H., in Proceedings: 1983 International Paper Physics Conference, (TAPPI Press, Atlanta, GA, 1983, p. 59).Google Scholar
44. Atalla, R.H., Ellis, J.D., and Schroeder, L.R., Wood Chem. Tech. 4, 465 (1984).Google Scholar