Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:31:15.988Z Has data issue: false hasContentIssue false

Structure-Property Relationship of Metal-Ceramic Interfaces Produced by Laser Processing

Published online by Cambridge University Press:  21 February 2011

J.Th.M. De Hosson
Affiliation:
Department of Applied Physics, University of Groningen, Zernike Complex, Nijenborgh 4,9747 AG Groningen, The Netherlands
X.B. Zhou
Affiliation:
Department of Applied Physics, University of Groningen, Zernike Complex, Nijenborgh 4,9747 AG Groningen, The Netherlands
M. Van Den Burg
Affiliation:
Department of Applied Physics, University of Groningen, Zernike Complex, Nijenborgh 4,9747 AG Groningen, The Netherlands
Get access

Abstract

A novel process was developed to firmly coat an aluminium alloy, A16061, with α-A12O3 by means of laser processing. In this approach a mixture of SiO2 and Al powder was used to inject in the laser melted surface of aluminium. A reaction product α-A12O3 layer of a thickness of 100 μm was created which was well bonded to the aluminium surface.Various interfaces, A1/α-A12O3, Al/mullite and α-A12O3/;mullite, were studied by conventional transmission electron microscopy (CTEM) and high resolution electron microscope (HREM). It turns out that the presence of the A1/;muilite interface may be essential to form a well bonded oxide layer and the high Si-content α-A12O3 intermediate layer may be wetted better by liquid Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zhou, X.B., Hosson, J. Th.M. De, Acta Metall. Mater., 39, 2267 (1991).Google Scholar
[2] Hosson, J.Th.M.De, Zhou, X.B., Burg, M. van den, Acta metall. mater., 40, S139 (1992).CrossRefGoogle Scholar
[3] Burg, M. van den, Hosson, J.Th.M. De, J. Mat. Res., Jan 1994.Google Scholar
[4] Burg, M. van den and Hosson, J.Th.M. De, Acta Metall. Mater., 41, 2557 (1993).CrossRefGoogle Scholar
[5] Zhou, X.B. and Hosson, J.Th.M.De, Scripta Metall. Mater., 34, 55(1993)Google Scholar
[6] Rahman, S. Hamid and Weichert, H.-T., Acta Cryst. B46(1990), 139 CrossRefGoogle Scholar
[7] Delannay, F., Froyen, L. and Deruyffere, A., J. Mater. Sci., 18(1987), 1 CrossRefGoogle Scholar
[8] Gillet, E., Ealet, B. and Berlioz, J.L., Surf. Interf Analy., L6(1990), 461 Google Scholar
[9] Johnson, K.H. and Pepper, S.V., J. Appl. Phys., 51(1982), 6634 Google Scholar
[10] Keeffe, M.D., J. Mater. Res., 6(1991), 2371 Google Scholar
[11] Knott, J.F., Fundamentals of fracture mechanics, Butterworths, London, 1973.Google Scholar
[12] Kingery, W.D., Introduction to Ceramics, John Wiley, New York (1967,1960), pp 116,436,605Google Scholar
[13] Bourret, A., J. de Phys. Colloq. C7 suppl.,51(1990), C1-13Google Scholar
[14] Ishida, Y., J. de Phys. Colloq. C7 suppl.,51(1990), C1-13Google Scholar
[15] Reimanis, I.E., Dalgleish, B.J., Evans, A.G., Acta Metall. Mater. 39, 3133 (1991).Google Scholar
[16] Klomp, J.T., Surface and Interfaces of Ceramics Materials, eds., Dufour, L.-C. et al. , Kluwer Academic(1989), 375 Google Scholar
[17] Evans, A.G., Dalgleish, B.J., Acta Metall. Mater. 40, S295 (1992).Google Scholar
[18] Samsonov, G.V., The oxide Handbook, IFI/Plenum (1973), 224, 452Google Scholar
[19] Nicholas, M.G., Surface and interfaces of ceramic materials, Dufour, L.-C. et al. (eds.), Kluwer Academic(1989), 393 Google Scholar
[20] Paulmann, C., Rahman, S.H. and Weichert, H.T., Electron Microscopy, 2 (1992), 445 Google Scholar
[21] Choh, T., Oki, T., J.Jpn. Inst. Met., 12(1987), 1209 Google Scholar
[22] Hlavac, J., The Technology of Glass and Ceramics: An Introduction, Elsevier, Amsterdam (1983), 40 Google Scholar
[23] Wu, Suxing, Clausses, N., J. Am. Ceram. Soc., 74(1991), 2448 Google Scholar
[24] Levin, E.M., Robbins, C.R. & Mcmurdie, H.F., Phase Diagrams for Ceramist, The American Ceramic Society (1964), 123 Google Scholar
[25] Handbook of Chemistry and Physics, 63th edn, CRC Press, Boca Raton, Flarida (1982), F23 Google Scholar
[26] Eshelby, J.D., Frank, F.C. and Nabarro, F.R.N., Phil. Mag. 42, 351 (1951).Google Scholar
[27] Leibfried, G., Z. Physik, 130, 214 (1951).Google Scholar
[28] Hutchinson, J.W., Adv. Applied Mech. 29, 63 (1993).Google Scholar
[29] Weertman, J., Mechanics of Materials, 15, 65 (1993).Google Scholar
[30] Weertman, J., Proc. R. Soc. London, A 425, 291 (1989).Google Scholar
[31] Weertman, J., Dislocation based fracture mechanics, ch 6 (in preparation)Google Scholar
[32] Bilby, B., Cottrell, A.H. and Swinden, K.H., Proc. R. Soc. London, A 272, 304 (1963).Google Scholar
[33] Dundurs, J., J. Appl. Mech. 36, 650 (1969).CrossRefGoogle Scholar
[34] Argon, A.S., Gupta, V., Landis, H.S., Cornie, J.A., J. Mat. Sci., 24, 1207 (1989).Google Scholar
[35] Hu, M.S. and Evans, A.G., Acta Metall. Mater., 37, 917 (1989).Google Scholar