Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T06:42:25.848Z Has data issue: false hasContentIssue false

Structure-Electronic Properties Relationships in Conducting Polymers: CP-MAS NMR and MM Analysis

Published online by Cambridge University Press:  10 February 2011

S. Bradamante
Affiliation:
Dip. di Chimica Organica e Industriale delUUniversiti e Centro CNR Sintesi e Stereochimica Speciali Sistemi Organici, via Golgi 19, 20133 Milano, Italy.
A. Berlin
Affiliation:
Dip. di Chimica Organica e Industriale delUUniversiti e Centro CNR Sintesi e Stereochimica Speciali Sistemi Organici, via Golgi 19, 20133 Milano, Italy.
A. Canavesi
Affiliation:
Dip. di Chimica Organica e Industriale delUUniversiti e Centro CNR Sintesi e Stereochimica Speciali Sistemi Organici, via Golgi 19, 20133 Milano, Italy.
G. Zotti
Affiliation:
Istituto CNR di Polarografia ed Elettrochimica Preparativa, c.so Stati Uniti 4, 35020 Padova, Italy.
Get access

Abstract

The anodic oxidative polymerization of alkyl functionalized 4H-cyclopenta[2, 1-b:3,4-b']- dithiophene (CPDT) followed by undoping provides soluble and processable materials. We used CP MAS and high resolution NMR to analyze the monomers and polymers with the aim of correlating their structural features and conductivity. T1 relaxation values in solution and solid state were compared. Information about the preferred conformations of the polymers (backbone, distances, torsional angles) was deduced using the Molecular Modeling approach. The conclusions were derived by combining the indications obtained from both the spectroscopic and computational methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Handbook of Conducting Polymers, edited by Skotheim, T. A. (Marcel Dekker, New York, 1986) Vol.2.Google Scholar
2. Eisenbaumer, R-L., Jen, K.Y. and Obvodi, R., Synth. Met. 15, 169 (1986).Google Scholar
3. Sato, M., Tanaka, S. and Kaeriyama, H., J. Chem. Soc., Chem. Commun. 1986, 873.Google Scholar
4. Jen, KY, Miller, G. and Eisenbaumer, R.L., J. Chem. Soc., Chem. Commun. 1986, 1346.Google Scholar
5. Hotta, S., Rughoopth, S.D.D.V., Heeger, A.J and Wudl, F., Macromolecules 20, 212 (1987).Google Scholar
6. Kolbert, A.C, Sariciftci, N.S., Gaudl, K.-U., Bäuerle, P. and Mehring, M., J. Am. Chem. Soc. 113, 8243 (1991).Google Scholar
7. Winokur, M.J., Spiegel, D., Kim, Y., Hotta, S. and Heeger, A.J., Synth. Met. 28, C419 (1989).Google Scholar
8. Jeffiies, A.T., Moore, K.C., Ondeyka, D.M., Sprinsteen, A.V. and MacDowell, D.V.H, J. Org. ChemL 46, 2885 (1991).Google Scholar
9. Kraak, A., Wiersema, A.K., Jordens, P. and Wynberg, H., Tetrahedron 24, 3381 (1968).Google Scholar
10. Brenna, E., Ph D thesis, University of Milan, 1993.Google Scholar
11. Zotti, G., Schiavon, G., Berlin, A., Fontana, G. and Pagani, G., Macromolecules 27, 1938 (1994).Google Scholar
12. Breitmaier, E. and Voelter, W., Carbon-13 NMR Spectroscopy (VCH, New York, 1987).Google Scholar
13. Earl, W.L. and VanderHart, D.L., Maromolecules 12, 762 (1979).Google Scholar
14. Pilati, T., Acta Cryst. C51, 690 (1995).Google Scholar
15. Bruckner, S. and Porzio, W., Makromol. Chem- 189, 961 (1988).Google Scholar
16. Gustafsson, G., Ingandis, O., österholm, H. and Laakso, J., Polymer 32, 1574 (1991).Google Scholar