Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:51:08.676Z Has data issue: false hasContentIssue false

The Structure, Role and Flexibility of Grain Boundaries

Published online by Cambridge University Press:  15 March 2011

M. Samaras*
Affiliation:
Nuclear Energy and Safety, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
M. Victoria
Affiliation:
Nuclear Energy and Safety, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
W. Hoffelner
Affiliation:
Nuclear Energy and Safety, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
*
Corresponding author: [email protected]
Get access

Abstract

The structure and role of grain boundaries is investigated using an atomic analysis of the grain boundary movement during Molecular Dynamics displacement cascade simulations of bcc Fe. The results show the grain boundary to be a flexible entity. Local restructuring of the GB accommodates the incoming self interstitial atoms with local kinks, or small movements of a few atomic spacings occurring when the grain boundary is engulfed in the displacement cascade. The damage created is investigated using two potentials: the Ackland (non-magnetic) and the Dudarev- Derlet (magnetic) to study the role and influence of magnetism on the results obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Allen, T., Burlet, H., Nanstad, R. K., Samaras, M., and Ukai, S., MRS Bulletin, January (2009).Google Scholar
2. Samaras, M., Victoria, M. and Hoffelner, W., J. Nucl. Mater. 371, 28 (2007).Google Scholar
3. Koch, C. C., Morris, D. G, Lu, K., and Inoue, A., MRS Bull., 24, 54 (1999).Google Scholar
4. Weertman, J. R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R., Swygenhoven, H. Van, MRS Bull 24, 44 (1999).Google Scholar
5. Rose, M., Strwhleninduzierte Defektbildung in nanokristallinen Materialienm No. 503 in Fortschritts Ber. VDI, Reihe 5, VDI Verlag, Duesseldor, (1997).Google Scholar
6. Nita, N., Schaeublin, R., Victoria, M. and Valiev, R.Z., Phil Mag 85, 723 (2005).Google Scholar
7. Voegeli, W., Albe, K. and Hahn, H., Nucl. Instrum. and Meth. B 202, 230 (2003).Google Scholar
8. Nita, N., Schaeublin, R. and Victoria, M., J. Nucl. Mater. 329–333, 1127 (2004).Google Scholar
9. Samaras, M., et al., Nucl. Instr. and Meth. B 202, 51 (2002)Google Scholar
10. Samaras, M., Derlet, P. M., Swygenhoven, H. Van, Victoria, M., Phys. Rev. Lett. 88, 125505 (2002).Google Scholar
11. Samaras, M., Derlet, P.M., Swygenhoven, H. Van and Victoria, M., Phil Mag 84, 3599, (2003).Google Scholar
12. Samaras, M., et al., J. Nucl. Mater. 323, 213 (2003).Google Scholar
13. Samaras, M., et al., J. Nucl. Mater. 351, 47 (2006).Google Scholar
14. Samaras, M., et al., Phys Rev B. 68, 224111 (2003).Google Scholar
15. Samaras, M., Victoria, M. and Hoffelner, W., J. Nucl. Mater. 352, 50 (2006).Google Scholar
16. Hasegawa, H., Pettifor, D., Phys. Rev. Lett. 50, 130 (1983).Google Scholar
17. Fu, C. C., Willaime, F., Ordejon, P., Phys. Rev. Lett. 92, 175503 (2004).Google Scholar
18. Koch, C.C., Morris, D. G., Lu, K., Inoue, A., Mater. Res. Soc. Bull. 24, 54 (1999).Google Scholar
19. Farkas, D., Willemann, M., and Hyde, B., Phys. Rev. Lett. 94, 165502, April 26, 2005.Google Scholar
20. Nita, N., Schaeblin, R., Victoria, M., J. Nucl. Mater. 329333 (2004).Google Scholar
21. Voronoi, G. Z., J. Reine Angew. Math.1 34, 199 (1908).Google Scholar
22. Ackland, G. J, Phys Rev. Lett. 97, 015502 (2006).Google Scholar
23. Dudarev, S. L., Derlet, P. M., J. Phys. Condens. Matter 17, 7097 (2005).Google Scholar
24. Paxton, A. T., Finnis, M. W., cond-mat-mtrl-scxi arXiv:0710.4399vl; 24th October 2007.Google Scholar
25. Olsson, P., Wallenius, J., Domain, C., Nordlund, K., Malerba, L., Phys. Rev. B 72, 214119, (2005).Google Scholar
26. Ackland, G.J., Bacon, D.J., Calder, A.F. and Harry, T., Phil. Mag. A 75 713 (1997).Google Scholar
27. Ziegler, J., Biersack, J. P. and Littmark, U. in ‘The stopping range of ions in solids’, Perfamonm New York, (1987).Google Scholar
28. Mendelev, M. I., Han, S., Srolovitz, D. J., Ackland, G. J., Sun, D. Y., Asta, M., Philos. Mag. A 83 3977 (2003).Google Scholar
29. Malerba, L., J. Nucl. Mater. 351, 28 (2006).Google Scholar
30. Maeta, H., Ono, F., Kittaka, T.J., J. Phys. Soc. Japan 53 4353 (1984).Google Scholar
31. Wallenius, J., et al., Nucl. Instr. and Meth. Phys. Res. B 255, 68, (2007)Google Scholar
32. Haghighat, S. M. Hafez and Schäublin, R., JNM in press.Google Scholar
33. Becquart, C.S., Souidi, A., Hou, M., Phys. Rev. B 66, 134104 (2002).Google Scholar
34. Terentyev, T., Lagerstedt, C., Olsson, P., Nordlund, K., Wallenius, J., Bequart, C.S., Malerba, L., J. Nucl. Mater. 351, 65 (2006).Google Scholar
35. Ziegler, J., Biersack, J. P., Littmark, U., ‘The Stopping Range of Ions in Solids’, pergamon, New York, 1987.Google Scholar