Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T17:24:27.175Z Has data issue: false hasContentIssue false

Structure of Thermally Grown SiO2 on Crystalline 6H‐SíC

Published online by Cambridge University Press:  10 February 2011

H. Tsuchida
Affiliation:
Yokosuka Research Laboratory, Central Research Institute of Electric Power Industry, 2‐6‐1 Nagasaka, Yokosuka, Kanagawa 240‐01, Japan
I. Kamata
Affiliation:
Yokosuka Research Laboratory, Central Research Institute of Electric Power Industry, 2‐6‐1 Nagasaka, Yokosuka, Kanagawa 240‐01, Japan
K. Izumi
Affiliation:
Yokosuka Research Laboratory, Central Research Institute of Electric Power Industry, 2‐6‐1 Nagasaka, Yokosuka, Kanagawa 240‐01, Japan
Get access

Abstract

The structure of a thermally grown SiO2 film on a crystalline 6H‐SiC substrate was investigated using X‐ray reflectivity and fourier‐transformed infrared attenuated total reflection (FTIR‐ATR). The density, surface roughness and interface roughness of thermal oxide on 6H‐SiC were obtained by X‐ray reflectivity. The TO mode and the LO mode of Si‐O‐Si stretching vibration from the thermal oxide film on 6H‐SiC were obtained from polarized ATR spectra. The local structure of SiO2 film near the SiO2 /SiC interface was discussed from the measurements, and the thermally grown SiO2 film on a 6H‐SiC substrate was found to have a structural transition layer with thickness below 10 nm near the SiO2/SiC interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lipkin, L.A. and Palmour, J.W., J. Electr. Mater. 25, 909 (1996).Google Scholar
2 Ducke, E., Kriegel, R., Fissel, A., Kaiser, U., Schröter, B., Müller, P., and Richter, W., Silicon Carbide and Related Materials 1995, ed. by Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (Inst. Phys. Conf. Ser. 142, 1996) p. 609.Google Scholar
3 Suzuki, A., Ashida, H., Furui, N., Mameno, K., and Matsunami, H., Jpn. J. Appl.Phys. 21, 579 (1982).Google Scholar
4 Akita, H., Kimoto, T., Inoue, N., and Matsunami, H., Silicon Carbide and Related Materials 1995, ed. by Nakashima, S., Matsunami, H., Yoshida, S., and Harima, H. (fost. Phys. Conf. Ser. 142, 1996) p. 725.Google Scholar
5 Hometz, B., Michel, H.J., and Halbritter, J., J. Mater. Res. 9, 3088 (1994).Google Scholar
6 Heald, S.M., Jayanetti, J.K.D., Bright, A.A., and Rudloff, G.W., J. Vac. Sei. Technol. A8, 2046 (1990).Google Scholar
7 Yamazaki, T., Miyazaki, S., Bjorkman, C.H., Fukuda, M., and Hirose, M., in Interface Control of Electrical, Chemical, and Mechanical Properties, edited by Murarka, S.P., Rose, K., Ohmi, T., and Seidel, T. (Mater. Res. Soc. Proc. 318, Pittsburgh, PA, 1994) pp.419424.Google Scholar
8 Parratt, L.G., Phys. Rev. 95, 359 (1954).Google Scholar
9 Chabal, Y.J., Surf. Sei. Reports 8, 211 (1988).Google Scholar
10 Philipp, H.R., in Handbook of Optical Constants of Solids, edited by Palik, E.D. (Academic Press, New York, 1985) pp. 749763.Google Scholar
11 Spitzer, W.G., Kleinman, D., and Walsh, D., Phys. Rev. 113, 127 (1959).Google Scholar
12 Pampuch, R., Ptak, W., Jonas, S. and Stoch, J., Mater. Sei. Monogr. 6, 435 (1980).Google Scholar
13 Lucovsky, G., Manitini, M.J., Srivastava, J.K., and Irene, E.A., J. Vac. Sei. Technol. B5, 530 (1987).Google Scholar
14 Irene, E.A., Tiemey, E., and Angilello, J., J. Electrochem. Soc. 129, 2594 (1982).Google Scholar
15 Yamazaki, T., Bjorkman, C.H., Miyazaki, S., and Hirose, M., Proc. of 22nd Int. Conf. Phys. Semicond. 1995 Vol. 3, 2653 (1995).Google Scholar
16 Walrafen, G.E., Chu, Y.C., and Hokmabadi, M.S., J. Chem. Phys, 92, 6987 (1990).Google Scholar