Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T08:44:19.129Z Has data issue: false hasContentIssue false

Structure of Supported Metal Catalysts Derived from Molecular Bimetallic Clusters

Published online by Cambridge University Press:  28 February 2011

M. J. Kelley
Affiliation:
Engineering Technology Laboratory, Building 304, Experimental Station, E. I. du Pont de Nemours & Co., Inc., Wilmington, DE 19898.
A. S. Fung
Affiliation:
Center for Catalytic Science and Technology, Department of Chemical Engineering, University of Delaware, Newark DE 19716
M. R. McDevitt
Affiliation:
now at Department of Chemistry, Drexel University, Philadelphia, PA 19104
P. A. Tooley
Affiliation:
now at Phillips Petroleum Company, Bartlesville, OK.
B. C. Gates
Affiliation:
Center for Catalytic Science and Technology, Department of Chemical Engineering, University of Delaware, Newark DE 19716
Get access

Abstract

Re-containing molecular bimetallic clusters were used as precursors for gamma alumina supported catalysts. Characterization by XPS and XAS after hydrogen reduction showed Re valence states in the order Re monometallic > Re-Os bimetallic > Re-Pt bimetallic > zero. These results suggest that industrial bimetallic catalysts are not best understood in terms of alloys, but rather as multifunctional, with each element contributing its own activity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klucksdahl, H.E.; U.S. Patent 3, 415, 737 (1968).Google Scholar
2. Sinfelt, J.H.; “Bimetallic Catalysts”, Wiley/EXXON (1983).Google Scholar
3. Carter, J.L., McVicker, G.B., Weissman, W., Kmak, W.S. and Sinfelt, J.H.; Appl.Cat.3, 327 (1982).CrossRefGoogle Scholar
4. Bertolacini, R.J. and Pellet, R.J.; in “Catalyst Deactivation”, Elsevier, 72 (1980).Google Scholar
5. Roberts, G.W. and Hastings, K.E.; Ger.Offen. 26 27 822 (1977).Google Scholar
6. Coughlin, R.W., Kawakami, K. and Hasan, A.; J.Catal.88, 150 (1984).CrossRefGoogle Scholar
7. Short, D.R., Khalid, S.M., Katzer, J.R. and Kelley, M.J.; J.Catal.72, 288 (1981).CrossRefGoogle Scholar
8. Onuferko, J.H., Short, D.R. and Kelley, M.J.; Appl.Surf.Sci.19, 227 (1984).CrossRefGoogle Scholar
9. Biloen, P., Helle, J.N., Verbeek, H., Dautzenberg, F.M. and Sachtler, W.M.H.; J.Catal. 63, 119 (1980).CrossRefGoogle Scholar
10. Pacheco, M.A. and Petersen, E.E.; J.Catal.96, 499 (1985).CrossRefGoogle Scholar
11. Shum, V.K., Butt, J.B. and Sachtler, W.M.H.; J.Catal. 96, 371 (1985).CrossRefGoogle Scholar
12. Meitzner, G., Via, G.H., Sinfelt, J.H. and Lytle, F.W.; ACS Petrol. Div.Prepr. 32, 733 (1987).Google Scholar
13. Yao, H.C. and Shelef, M.; J.Catal. 44, 392 (1975).CrossRefGoogle Scholar
14. Andrews, M.A., Kirtley, S.W. and Kaesz, H.D.; Inorg.Synth. 17, 66 (1977).CrossRefGoogle Scholar
15. Knight, J. and Mays, M.J.; J.Chem.Soc.- Dalton Trans., 1022 (1972).CrossRefGoogle Scholar
16. Urbancic, M.A., Wilson, S.R. and Shapley, J.R.; Inorg.Chem. 23, 2954 (1984).CrossRefGoogle Scholar
17. Lytle, F.W.; J.Catal.43, 376 (1976).CrossRefGoogle Scholar
18. Lytle, F.W., Wei, P.S.P., Greegor, R.B., Via, G.H. and Sinfelt, J.H.; J.Chem.Phys. 70, 4849 (1979).CrossRefGoogle Scholar
19. Horsely, J.A.; J.Chem.Phys. 76, 1451 (1982).CrossRefGoogle Scholar
20. e.g., Lagarde, P., Raoux, D. and Petiau, J.; “EXAFS and Near Edge Structure IV”, J.Physique Coll.C8 (1986).Google Scholar
21. Clark, H.C. and Manzer, L.E.; J.Organomet.Chem. 59, 411 (1973).CrossRefGoogle Scholar
22. Alnot, M., Cassuto, A., Ducros, R., Ehrhardt, J.J. and Weber, B.; Surf.Sci. 114, L48 (1982).CrossRefGoogle Scholar
23. Kirlin, P.S., Strohmeier, B.R. and Gates, B.C.; J.Catal.98, 308 (1986).CrossRefGoogle Scholar
24. Knozinger, H., Zhao, Y., Tesche, B., Barth, R., Epstein, R., Gates, B.C. and Scott, J.P.; Farad.Disc.Chem.Soc. 72, 53, 1981.CrossRefGoogle Scholar
25. von Hegedus, A.J., Millner, T., Neugebauer, J. and Sasv'ari, K.; Z.Anorg.Allg.Chem. 281, 64 (1955).CrossRefGoogle Scholar
26. Frety, R., Charcosset, H. and Trambouze, Y.; Ind.Chim.Belge 38, 501 (1973).Google Scholar
27. Kelley, M.J. and Dadyburjor, D.B.; in “Catalyst Deactivation”, Petersen, E.E. and Bell, A.T. eds., Marcel Dekker, 125 (1987).Google Scholar
28. Herberhold, M., Suss, G., Ellerman, J. and Gabelein, H.; Chem.Ber. 111, 2931 (1978).CrossRefGoogle Scholar
29. Folkesson, B.; Acta Chem.Scand. 27, 297 (1973).Google Scholar
30. Berndtsson, A., Nyholm, R., Martensson, H., Nilsson, R. and Hedman, J.; Phys.Stat.Sol.B 93, K103 (1979)CrossRefGoogle Scholar
31. Kirlin, P.S., DeThomas, F.A., Bailey, J.W., Moller, K., Gold, H.S., Dybowski, C. and Gates, B.C.; Surf.Sci. 175, L707 (1986).CrossRefGoogle Scholar