Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:41:55.506Z Has data issue: false hasContentIssue false

Structure of Shear Bands in Zirconium-Based Metallic Glasses Observed by Transmission Electron Microscopy

Published online by Cambridge University Press:  11 February 2011

Xiaofeng Gu
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, U.S.A.
Kenneth J. T. Livi
Affiliation:
Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, U.S.A.
Todd C. Hufnagel
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, U.S.A.
Get access

Abstract

We have used transmission electron microscopy (TEM) to investigate the structure of shear bands produced by bending electron-transparent Zr52.5Cu17.9Ni14.6Al10Ti5 metallic glass specimens. Shear bands were located by comparing the structure of the specimens before and after deformation. The shear band spacing is influenced by the structure of the specimen; portions of the specimen with a significant population of nanocrystals show a smaller separation between shear bands. Quantitative high resolution TEM analysis based on ratio technique has been used to explore the defect structure in shear bands. High density and void-like defects with size of about 1 nm were found in shear bands formed in both amorphous and nanocrystalline areas. A simple model was proposed to explain the formation of these defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pampillo, C. A., Scripta Metall. 6 (1972) 915; J. Mater. Sci., 10 (1975) 1194.Google Scholar
2. Spaepen, F., Acta Metall. 25 (1977) 407.Google Scholar
3. Fan, C., Louzguine, D. V., Li, C., and Inoue, A., Appl. Phys. Lett. 75 (1999) 340.Google Scholar
4. Fan, Cang, Li, Chunfei, and Inoue, Akihisa, Phys. Rev. B 61 (2000) R3761.Google Scholar
5. Eckert, J., Reger-Leonhard, A., Weiβ, B., and Heilmaier, M., Mater. Sci. Engin. A301 (2001) 1.Google Scholar
6. Xing, L.-Q., Li, Y., Ramesh, K. T., Li, J. and Hufnagel, T. C., Phys. Rev. B 64 (2001) 180201.Google Scholar
7. Fan, Cang, Ott, R. T., and Hufnagel, T. C., Appl. Phys. Lett. 81 (2003) 1020.Google Scholar
8. Choi-Yim, H. and Johnson, W. L., Appl. Phys. Lett. 71 (1997) 3808.Google Scholar
9. Hays, C. C., Kim, C. P., and Johnson, W. L., Phys. Rev. Lett. 84 (2000) 2901.Google Scholar
10. Choi-Yim, H., Conner, R. D., Szuecs, F., and Johnson, W. L., Acta Mater 50 (2003) 2737.Google Scholar
11. Turnbull, D. and Cohen, M. H., J. Chem. Phys. 34 (1961) 120; J. Chem. Phys. 52 (1970) 3038.Google Scholar
12. Leamy, H. J., Chen, H. S., Wang, T. T., Metal. Trans. 3 (1972) 699.Google Scholar
13. Gilman, J. J., J. Appl. Phys. 44 (1973) 675;Google Scholar
Li, J. C. M., Met. Trans. A 16 (1985) 2227.Google Scholar
14. Perez-Prado, M. T., Hines, J. A., and Vecchio, K. S., Acta Mater. 49 (2001) 2905.Google Scholar
15. Wei, Q., Jia, D., Ramesh, K. T., and Ma, E., Appl. Phys. Lett. 81 (2003) 1240.Google Scholar
16. Donovan, P. E. and Stobbs, W. M., Acta Metall. 29, (1981) 1419.Google Scholar
17. Kim, J.-J., Choi, Y., Suresh, S., and Argon, A. S., Science 295 (2003) 654.Google Scholar
18. Pekarskaya, E., Kim, C. P., and Johnson, W. L., J. Mater. Res. 16 (2001) 2513.Google Scholar
19. Li, Jing, Wang, Z. L., and Hufnagel, T. C., Phys. Rev. B 65 (2003) 144201.Google Scholar
20. Miller, P. D. and Gibson, J. M., Ultramicroscopy 74 (1998) 221.Google Scholar
21. Gu, X., Xing, L. Q., and Hufnagel, T. C., J. Non-Cryst. Solids 311 (2003) 77.Google Scholar
22. Hammersley, A P, in FIT2D: An Introduction and Overview, (ESRF Internal Report, 1997)Google Scholar
23. Li, Jing, Spaepen, F., and Hufnagel, T. C., Phil. Mag. A 82 (2003) 2623.Google Scholar
24. Steif, P. S., Spaepen, F., and Hutchinson, J. W., Acta Metall. 30 (1982) 447.Google Scholar
25. Argon, A., Acta Metall. 27 (1979) 47.Google Scholar