Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:57:27.011Z Has data issue: false hasContentIssue false

Structure of Grain Boundaries in L12 Alloys at Finite Temperatures: Effects of Deviations from Stoichiometry

Published online by Cambridge University Press:  25 February 2011

M. Yan
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104–6272, U. S. A.
V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104–6272, U. S. A.
G. J. Ackland
Affiliation:
Department of Physics, University of Edinburgh, Edinburgh, Scotland, U. K.
Get access

Abstract

Atomic structures of grain boundaries in Ni3Al and Cu3Au has been studied using a Monte Carlo relaxation technique and many body central force potentials to describe interatomic forces. The purpose of this work is to investigate the temperature dependence of the compositional order in the boundary region for both stoichiometric and non-stoichiometric alloys. In the former case the boundaries in Ni3Al remain ordered up to very high temperatures while boundaries in Ni3Al disorder at relatively low temperatures. In the non-stoichiometric case, the surplus of nickel in the bulk leads to segregation to grain boundaries and to a significant chemical disordering in the boundary region. The surplus of aluminum also leads to segregation but without disordering in the boundary region. Using these results we discuss the intrinsic brittleness of grain boundaries in Ni3Al as well as the effect of stoichiometry on the intergranular brittleness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, C. T., editor, Intergranular Fracture and Boron Effects in Ni3Al and other Intermetallics, Scripta Metall, et Mater. 25, 1231 (1991).Google Scholar
2. Izumi, O. and Takasugi, T., J. Mater. Res. 3, 426 (1988).Google Scholar
3. Liu, C. T., Interfacial Structure, Properties and Design (edited by Yoo, M. H., Clark, W. A. T. and Briant, C. L.), Mater. Res. Soc. Symp. 122, 429 (1988).Google Scholar
4. Izumi, O. and Takasugi, T., High-Temperature Ordered Intermetallic Alloys II (edited by Stoloff, N. S., Koch, N. S., Liu, C. C. and Izumi, O.), Mater. Res. Soc. Symp. 81, 173 (1987).Google Scholar
5. Ackland, G. J. and Vitek, V., High-Temperature Ordered Intermetallic Alloys III (edited by Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C.) Mater. Res. Soc. Symp. 133, 105 (1989).Google Scholar
6. Vitek, V., Chen, S. P., Voter, A. F., Kruisman, J. J. and DeHosson, J. Th. M., Grain boundary Chemistry and Intergranular Fracture (edt. by Was, G. S. and Bruemmer, S. M.), Mat. Sci. Forum 46, 237 (1989).Google Scholar
7. Kruisman, J. J., Vitek, V. and DeHosson, J. Th. M., Acta Metall. 36, 2729 (1988).CrossRefGoogle Scholar
8. Vitek, V. and Chen, S. P., Scripta Metall. Mater. 25, 1237 (1991).CrossRefGoogle Scholar
9. Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984).Google Scholar
10. Ackland, G. J. and Vitek, V., Phys. Rev. B 41, 10324 (1990).Google Scholar
11. Vitek, V., Cserti, J. and Ackland, G. J., Alloy Phase Stability and Design (edited by Stocks, G. M., Giamei, A. P. and Pope, D. P.), Mat. Res. Soc. Symp. 186, (1991).Google Scholar
12. Haasen, P., Physical Metallurgy, Cambridge Univ. Press, London (1978).Google Scholar
13. Sastry, S. M. L. and Ramaswami, B., Phil. Mag. 33, 375 (1976).Google Scholar
14. Hultgren, R., Orr, R. L., Anderson, P. D., and Kelley, K. K., Selected Values of the Thermodynamic Properties of Metals and Binary Alloys, Wiley, New York (1963).Google Scholar
15. Baluc, N., Schaublin, R. and Hemker, K. J., Phil. Mag. Lett. 64, 327 (1991).Google Scholar
16. Foils, S. M., Phys. Rev. B 32, 7685 (1985).CrossRefGoogle Scholar
17. Najafabadi, R., Wang, H. Y., Srolovitz, D. J. and Lesar, R., Scripta Metall. Mater. 25, 2497 (1991).CrossRefGoogle Scholar