Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:45:49.298Z Has data issue: false hasContentIssue false

The Structure of GaAs Grown by Chemical Beam Epitaxy on Low-Temperature Cleaned Silicon

Published online by Cambridge University Press:  25 February 2011

Y. R. Xing
Affiliation:
Department of Materials Science and Engineering, The University of Liverpool, P.O. Box 147, Liverpool L69 3BX, England
C. J. Kiely
Affiliation:
Department of Materials Science and Engineering, The University of Liverpool, P.O. Box 147, Liverpool L69 3BX, England
P. J. Goodhew
Affiliation:
Department of Materials Science and Engineering, The University of Liverpool, P.O. Box 147, Liverpool L69 3BX, England
Get access

Abstract

Chemical beam epitaxy (CBE) has been used to grow GaAs on silicon with a low defect density after etching in HF followed by a low temperature (600°C) in situ heat treatment. High resolution electron microscopy (HREM) and convergent beam electron diffraction (CBED) studies show the presence of 90° and 60° dislocations and some inversion domains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chiu, T.H., Tsang, W.T., Schubert, E.F. & Agyekum, E., Appl. Phys. Lett. 51 1109 (1987)Google Scholar
2. Heinecke, H., Baur, B., Hoger, R. & Miklis, A., J. Crystal Growth 105 143 (1990)Google Scholar
3. Chiu, T.H., Tsang, W.T., Ditzenberger, J.A., Tu, C.W., Ren, F. & Wu, C.S., J. Electron. Mater. 17 217 (1988)Google Scholar
4. Tsang, W.T., Dagen, A.H., Chiu, T.H., Cunningham, J.E., Schubert, E.F., Ditzenberger, J.A. & Shah, J., Appl. Phys. Lett. 49 170 (1986)Google Scholar
5. Tsang, W.T., Schubert, E.F., Chiu, T.H., Cunningham, J.E., Burkhardt, E., Ditzenberger, J.A. & Agpekum, E., Appl. Phys. Lett. 51 761 (1987)Google Scholar
6. Tsang, W.T. & Schubert, E.F., Appl. Phys. Lett. 49 220 (1986)Google Scholar
7. Fang, S.F., Keizo, A., Morkoc, H., Choi, C.C. & Otsuka, N., J. Appl. Phys. 68 R31 (1990)Google Scholar
8. Wright, S. and Kroemer, H., Appl. Phys. Lett. 36 210 (1980).Google Scholar
9. Castagne, J., Bedel, E., Fontaine, C. and Munoz-Yague, A., J. Appl. Phys. 64 246 (1988).Google Scholar
10. Lyer, S. S., Arienzo, M. and de Fresart, E., Appl. Phys. Lett. 57 893 (1990).Google Scholar
11. Eaglesham, D. J., Higashi, G. S. and Cerullo, M., Appl. Phys. Lett. 59 685 (1991).Google Scholar
12. Wolf, S. H., Wagner, S., Bean, J. C., Gibson, J. M. and Hull, R., Appl. Phys. Lett. 55 2017 (1989)Google Scholar
13. Fang, S. F., Salvador, A. and Morkoc, H., Appl. Phys. Lett. 58 1887 (1991).Google Scholar
14. Otsuka, N., Choi, C., Nakamura, Y., Nagakura, S., Fisher, R., Peng, C.K. and Morkoc, H., Appl. Phys. Lett. 49 (1986) 277.Google Scholar
15. Cho, K.I., Choo, W.K., Lee, J.Y., Park, S.C. and Nishinaga, T., J. Appl. Phys., 69,(1991), 237.Google Scholar
16. Gerthsen, D., Biegelsen, D.K., Ponce, F.A. and Tramontane, J.C., J. Crystal Growth, 106, (1990), 157.Google Scholar
17. Ernst, F. and Pirouz, P., J. Mater. Res. 4 (1989), 834.Google Scholar
18. Xing, Y.R., Devenish, R.W., Joyce, T.B.F., Kiely, C.J., Bullough, T.J. and Goodhew, P.J., Appl. Phys. Lett. 60 (1992) 616.Google Scholar
19. Tafto, J. and Spence, J.C.H., J. Appl. Cryst. 15 (1982) 6064.Google Scholar