Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:19:11.907Z Has data issue: false hasContentIssue false

Structure of Dislocations and Interfaces in Non-Metallic Crystalline Materials

Published online by Cambridge University Press:  28 February 2011

C. B. Carter*
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell Univ., Ithaca, NY14853.
Get access

Abstract

The present understanding of the structure of grain boundaries and phase boundaries in ceramic materials is briefly reviewed with a view to extracting general conclusions on the structure of such interfaces. Examples of experimental studies of grain boundaries in alpha-alumina, spinel and germanium are discussed together with illustrations of the wustite/spinel and sesquioxide/spinel interface. In the oxide systems discussed here, both the grain boundaries and phase boundaries can facet even in the case where the anion sublattice is effectively undisturbed, this observation emphasises the influence of the cations on the selection of the boundary plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carter, C.B., Mat.Res.Soc.Symp.Proc. 31, 267 (1984).Google Scholar
2. Carter, C.B., Proc. Int. Colloq.on Dislocations, Aussois, France (eds: Veyssière, P., Kubin, L.P. and Castaing, J.; CNRS Editions), p.227 (1984).Google Scholar
3. Mitchell, T.E., Hobbs, L.W., Heuer, A.H., Castaing, J., Cadoz, J. and Philibert, J., Acta Met. 27, 1677 (1979).Google Scholar
4. Horton, J.A. and Liu, C.T., Acta Met. 33(12), 2191 (1985).Google Scholar
5. Sun, C.P. and Balluffi, R.W., Phil. Mag. A46, 49 and 63 (1982).Google Scholar
6. Liou, K.-Y. and Jeterson, N.L., Mater. Sci. Res. 14, 189 (1981).Google Scholar
7. Schmid, H., Rühle, M. and Peterson, N.L., in Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems (eds: Pask, J. and Evans, A.G., Plenum; NY), p177 (1981).Google Scholar
8. Eastman, J., Schmückle, F., Vaudin, M.D. and Sass, S.L., Adv. Ceram. 10, (1984)Google Scholar
9. Morrissey, K.J. and Carter, C.B., J. Am. Ceram. Soc., 67 (4), 292 (1984).Google Scholar
10. Morrissey, K.J. and Carter, C.B., Adv. Ceram. 6, 85 (1983).Google Scholar
11. Carter, C.B. and Morrissey, K.J., Adv. Ceram. 10, 303 (1984).Google Scholar
12. Bollman, W., Crystal Defects and Crystalline Interfaces, Springer-Verlag; NY (1970).Google Scholar
13. Warrington, D. in Grain Boundary Structure and Kinetics(ASM; Metals Park, Ohio), p1 (1979).Google Scholar
14. Smith, D.A. and Pond, R.C., Int. Met. Rev. No. 205 (1976).Google Scholar
15. Carter, C.B., Proc.Int.Colloq.on Dislocations,Aussois,France (Eds Veyssière, P., Kubin, L.P. and Castaing, J.; CNRS Editions), p227, (1984).Google Scholar
16. Kingery, W.D., J. Am. Ceram. Soc. 57(1), 1 (1976).Google Scholar
17. Kingery, W.D., Pure and Appl. Chem., 56(12), 1703 (1984).Google Scholar
18. Kouh Simpson, Y., Carter, C.B., Morrissey, K.J., Angelini, P. and Bentley, J., J. Mater. Sci. in the press (1985).Google Scholar
19. Kouh Simpson, Y., Carter, C.B., Sklad, P. and Bentley, J., these proceedings (1985).Google Scholar
20. Ostyn, K.J. and Carter, C.B., Surf. Sci. 121, 360 (1982).Google Scholar
21. Barber, D.J. and Tighe, N.J., Phil. Mag. 14, 531 (1966).CrossRefGoogle Scholar
22. Carter, C.B., Kohlstedt, D.L. and Sass, S.L., J. Am. Ceram. Soc. 63(11–12), 623 (1980).Google Scholar
23. Veyssière, P., Rabier, J., Garem, H. and Grilhé, J., Phil.Mag. 33, 143 (1976).Google Scholar
24. Ostyn, K.J. and Carter, C.B., Adv. Ceram. 6, 44 (1983).Google Scholar
25. Ostyn, K.J., Wendt, H. and Carter, C.B., Beitr. Elektronenmikroskop. Diretabb. Oberfl. 16, 225 (1983).Google Scholar
26. Newcomb, S.B., Smith, D.J. and Stobbs, , J. Microsc. 137, (1983).Google Scholar
27. Carter, C.B. and Shaw, T.M., Scripta Met. 16(12), 1431 (1982).Google Scholar
28. Elgat, Z., Ph.D. Thesis, Cornell University, Ithaca, NY (1985).Google Scholar
29. Bursill, L.A. and Withers, R.L., Phil. Mag. A40, 213 (1979).Google Scholar
30. Yangui, B., Boulesteix, C., Bourret, A., Nihoul, G. and Schiffmacher, H., Phil. Mag. A45, 443 (1982).Google Scholar
31. Hyde, B.G., Anderson, S., Bakker, M., Plug, C.M. and O’Keeffe, M., Proc. Solid St. Chem. 12, 273 (1974).Google Scholar
32. Morrissey, K.J. and Carter, C.B., Mat. Sci. Res. 15, 297 (1982).Google Scholar
33. Chaudhari, P. and Matthews, J.W., J. Appl. Phys 42, 3063 (1971).Google Scholar
34. Duffy, D.M. and Tasker, P.W., Phil. Mag. A47(6), 817 (1983).CrossRefGoogle Scholar
35. Wolf, D., Mat Sci. Res. 14, 13 (1981).Google Scholar
36. Kronberg, M.L., Acta Met. 5, 507 (1957).Google Scholar
37. Carter, C.B., in preparation.Google Scholar
38. Morrissey, K.J. and Carter, C.B., Mat. Res. Soc. Symp. Proc. 24, 121 (1984).Google Scholar
39. Hansen, S.C. and Phillips, D.S., Phil. Mag. 47(2), 209 (1983).Google Scholar
40. Bulua, J.R., Waff, H.S. and Tyburczy, J. A., J.Geophys.Res. 84(B11), 6102 (1979).Google Scholar
41. Bourret, A., Billard, L. and Petit, M., Inst. Phys. Conf. Ser. 76, 23 (1985).Google Scholar
42. Elgat, Z. and Carter, C.B., in preparation (1985).Google Scholar
43. Ostyn, K.J., Carter, C.B., Koehne, M., Falke, H. and Schmalzried, H., J. Am. Ceram. Soc. 67(10), 679 (1984).Google Scholar
44. Ostyn, K.J., Carter, C.B., and Schmalzried, H., Beitr. Elektronenmikroskop. Diretabb. Oberfl. 16, 255 (1983).Google Scholar
45. Chen, C.-H., Notis, M.R. and Williams, D.B., J. Am. Ceram. Soc. 66(8), 566 (1983).Google Scholar
46. Carter, C.B. and Schmalzried, H., Phil. Mag. A52(2), 207 (1985).Google Scholar
47. Kouh Simpson, Y. and Carter, C.B., Phil. Mag. Lett. in press (1985).Google Scholar
48. Kouh Simpson, Y. and Carter, C.B., research in progress.Google Scholar
49. Kouh Simpson, Y. and Carter, C.B., these proceedings.Google Scholar