Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:49:28.488Z Has data issue: false hasContentIssue false

Structure of crystallographically challenged materials by profile analysis of atomic pair distribution functions: study of LiMoS2 and mesostructured MnGe4S10.

Published online by Cambridge University Press:  21 March 2011

V. Petkov
Affiliation:
Department of Physics and Astronomy Center for Fundamental Materials Research, Michigan State University, East Lansing, MI-48824
K. K. Rangan
Affiliation:
Department of Chemistry Center for Fundamental Materials Research, Michigan State University, East Lansing, MI-48824
M. G. Kanatzidis
Affiliation:
Department of Chemistry Center for Fundamental Materials Research, Michigan State University, East Lansing, MI-48824
S.J.L. Billinge
Affiliation:
Department of Physics and Astronomy Center for Fundamental Materials Research, Michigan State University, East Lansing, MI-48824
Get access

Abstract

The approach of the atomic pair distribution function (PDF) technique to study the structure of materials with significant disorder is considered and successfully applied to LiMoS2 and mesostructured MnGe4S10. We find that LiMoS2 is built of layers of distorted MoS6 octahedra stacked along the c axis of a triclinic unit cell with well-defined Mo-Mo bonding. Mesostructured MnGe4S10 is a three-dimensional framework of “adamantane-like” [Ge4S10] units bridged by Mn atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klug, H.P. and Alexander, L.E., X-ray diffraction procedures for polycrystalline and amorphous materials, (Wiley, New York, 1974); B.E. Warren, X-ray diffraction, (Dover, New York, 1990).Google Scholar
2. Petkov, V., Jeong, I-K., Chung, J.S., Thorpe, M.F., Kycia, S. and Billinge, S.J.L., Phys. Rev. Lett. 83, 4089 (1999).Google Scholar
3. Egami, T., Mater. Trans. 31, 163 (1990); V. Petkov, S.J.L. Billinge, J. Heising and M.G.Kanatzidis, J. Am Chem. Soc. 122, 11571 (2000).Google Scholar
4. Py, M. A. and Haering, R., Can. J. Phys. 61, 76 (1983); K. Chrissafis, M. Zamani, K. Kambas, J. Stoemenos, A. Economou, I. Samaras and C. Julien, Mater. Sci. Eng. B 3, 145 (1989); P. Mulhern, Can. J. Phys. 67, 1049 (1989).Google Scholar
5. Wachhold, M., Rangan, K., Lei, M., Thorpe, M.F., Billinge, S.J.L., Petkov, V., Heising, J. and Kanatzidis, M.G., J. Solid. State Chem. 152, 21 (2000).Google Scholar
6. Rangan, K. K., Billinge, S.J.L., Petkov, V., Heising, J. and Kanatzidis, M., Chem. Mater. 11, 2629 (1999).Google Scholar
7. Petkov, V., J. Appl. Cryst. 22, 387 (1989).Google Scholar
8. Wyckoff, R., Crystal Structures, (Wiley, New York, 1964).Google Scholar
9. Proffen, Th., Billinge, S.J.L., J. Appl. Cryst. 32, 572 (1999).Google Scholar
10. Keen, D. A., J. Appl. Cryst. 34, 172 (2001).Google Scholar
11. Rietveld, H., J. Appl. Cryst. 2, 65 (1969).Google Scholar
12. Petkov, V., Bilinge, S.J.L., Rangan, K.K., Kanatzidis, M.G.. Larson, P. and Vogt, T., Phys. Rev. Lett. (2000), submitted.Google Scholar
13. Rocquefelte, X., Boucher, F., Gressier, P., Ouvrard, G., Blaha, P. and Schwartz, K., Phys. Rev. B. 62, 2397 (2000).Google Scholar
14. Achak, O., Pivan, J.Y., Maunaye, M., Louer, M. and Louer, D., J. Sol. State Chem. 121, 473 (1996).Google Scholar
15. Billinge, S.J.L., Petkov, V., Thorpe, M.F., Lei, M., Wachhold, M., Rangan, K.K. and Kanatzidis, M.G., in preparation.Google Scholar